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Abstract— Incentive-based coordination mechanisms for dis-
tributed energy consumption have shown promise in aligning
individual user objectives with social welfare, especially under
privacy constraints. Our prior work proposed a two-timescale
adaptive pricing framework, where users respond to prices by
minimizing their local costs, and the system operator iteratively
updates the prices based on aggregate user responses. A key
assumption was that the system cost need to smoothly depend on
the aggregate of the user demands. In this paper, we relax this
assumption by considering the more realistic model in which the
system cost is determined by solving a Direct Current Optimal
Power Flow (DCOPF) problem with constraints. We present
a generalization of the pricing update rule that leverages the
generalized gradients of the system cost function, which may be
nonsmooth due to the structure of DCOPF. We prove that the
resulting dynamic system converges to a unique equilibrium,
which solves the social welfare optimization problem. Our
theoretical results provide guarantees on convergence and
stability using tools from nonsmooth analysis and Lyapunov
theory. Numerical simulations on networked energy systems
illustrate the effectiveness of the proposed scheme.

I. INTRODUCTION

Modern energy systems are undergoing a significant trans-
formation, marked by the increasing prevalence of distributed
energy resources (DERs), responsive loads, and the emer-
gence of more autonomous devices. These developments
have created opportunities for customers to actively par-
ticipate in system operations. However, unlike dispatchable
resources, customers often cannot be directly controlled by
an operator1 and must be coordinated through some form
of incentives [3]. But the system and its customers often
have competing objectives: system operators strive to achieve
global objectives like efficiency, reliability, fairness, and
stability of the network, while individual users optimize
their private costs and preferences that are often unknown
or unobservable to the system. In this paper, we study how
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1Direct load control exists and have been implemented, but are often

constrained by the number of times and duration that they can be called [1],
[2]. We do not explore this class of resources in this paper.

to achieve alignment between the system objective and user
objective while keeping most of the information about the
users private.

Incentive-based coordination mechanisms have received
extensive attention and are one of the main features of
power systems with communication capabilities [4]. In the
context of demand response in electricity markets, incentives
can take many different forms, ranging from alert/text-based
signals [5] to pricing [6]. In this paper, we focus on a
price-based incentive mechanism, in which a system oper-
ator broadcasts pricing signals, users respond by adjusting
their consumption to minimize individual costs, and then
the operator iteratively updates the prices based on user
responses. Ideally, this iterative interaction should converge
to an optimal solution that balances user cost and system
performance. However, the major obstacle is that the operator
typically lacks access to the cost functions of individual
users, either due to privacy concerns or reliance on complex
or black-box control strategies (e.g., reinforcement learning)
of users themselves [7]–[9]. This limits the effectiveness
of many pricing schemes and makes theoretical analysis
difficult.

A previous work [10] proposed a two-timescale adaptive
pricing framework adopted from a dynamic incentive [11]
that evolves with the actions of users. In this framework,
users act as price takers, optimizing their local behavior
in response to a broadcast price signal, while the opera-
tor iteratively updates prices based on observed aggregate
consumption. This iterative update circumvents the need for
user-specific knowledge. Moreover, under mild conditions,
such as monotonicity of user response with respect to price,
this adaptive scheme has been shown to converge to the
solution of the global social welfare optimization problem.

However, [10] made a key simplifying assumption that
prices and the operator’s objective are functions of aggregate
demand alone (hence the prices are uniform across the users).
Of course, in real-world power systems, electricity must be
delivered over a physical network, where supply and demand
must balance at each node, and transmission line capacities
impose additional constraints. On top of these constraints,
the operator solves an optimization problem which is often
modeled as a Direct Current Optimal Power Flow (DCOPF)
problem to determine the best way to satisfy the demands.
This introduces new layers of complexity, since the cost
depends nonlinearly and nonsmoothly on the demand, and
the prices can exhibit discontinuities.

The nonsmoothness of the price arises quite naturally. In
DCOPF problems, the feasible regions are polytopic and,
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when the generator costs are linear, the optimal solutions can
occur at the vertices of the feasible region [12]. Therefore,
a small change in load can change the set of binding con-
straints and in turn causes discontinuous jumps in prices [13].
The algorithms in [10] and [11] use prices to infer gradient
information about the system cost, but when the cost in
DCOPF is nonsmooth and the prices are discontinuous,
gradients are no longer well-defined.

This paper extends the adaptive pricing framework by
embedding DCOPF constraints into the system operator’s
objective and carefully designing pricing updates based on
generalized gradients of the (possibly nonsmooth) cost. Our
formulation integrates network constraints directly into the
operator’s cost, and we propose a pricing update rule based
on generalized gradients. This rule accounts for the potential
non-differentiability of the cost function due to network
constraints. Our main contributions are:

1) We design a vectorized price update rule based on the
generalized gradient of the nonsmooth system cost in-
duced by DCOPF, enabling implementation in realistic
grid models.

2) We prove that the proposed iterative mechanism con-
verges to a unique equilibrium that aligns user behavior
with the social welfare solution, using tools from Lya-
punov stability theory for nonsmooth systems.

This work offers a scalable and theoretically grounded ap-
proach to align local and global objectives in networked
energy systems, opening the door to practical decentral-
ized control under realistic grid constraints. The proposed
mechanism is robust to privacy constraints, as the operator
requires only demand observations and users do not need
to disclose their cost functions or internal constraints, thus
preserving privacy. We also demonstrate through simulations
on networked scenarios that the mechanism effectively in-
duces socially optimal behavior while maintaining system
feasibility under DCOPF.

II. PROBLEM FORMULATION

In this section, we motivate the need to design an incentive
pricing mechanism to achieve the global social welfare in
networked energy systems while preserving user privacy.

A. Planner’s Optimization Problem

We consider a supply-demand balancing electricity market
with n users indexed by i ∈ N := {1, . . . , n}. The power
demand of user i is denoted by xi ∈ R. For a given demand
profile of users x⃗ := (xi, i ∈ N ) ∈ Rn which is the column
vector obtained from the concatenation of all user demands,
the disutility of the power consumption of user i is given by
fi(xi), while the system cost in serving the demand profile
of users is given by J(x⃗).

We now discuss them separately:

Assumption 1 (Cost assumption). The following assump-
tions on cost functions are made throughout this paper:
• Each user disutility function fi(xi) is strictly convex and

twice continuously differentiable;

• The system cost function J(x⃗) is a parametric program-
ming determined from the DCOPF problem with linear
generation costs:

J(x⃗) :=min
ξ

cT ξ (1)

s.t. Linear constraints on ξ depending on x⃗

where c := (ci, i ∈ G) ∈ R|G| denotes the vector of
generation cost coefficients and ξ := (ξi, i ∈ G) ∈ R|G|

denotes the power generation from a set of generators G.
A nice feature of the optimal cost J(x⃗) is that it is a
convex function of the user demand profile x⃗ [14]. How-
ever, although J(x⃗) is continuous, it is not differentiable
everywhere.

Then the system operator is interested in solving the
following global social welfare problem:

min
x⃗∈Rn

C(x⃗) :=
∑
i∈N

fi(xi) + J(x⃗) , (2)

which minimizes the sum of the total disutility of all users
and the system cost to serve users.

Remark 1 (Linear generation cost assumption). Note that
the linear cost in (1) is in some sense the most difficult cost
function to deal with, at least in our setting. If the cost is
strongly convex function, for example, a quadratic cost, J
becomes differentiable everywhere. All of the results in the
paper still hold since in that case the generalized gradient
reduces to the (standard) gradient and all sets are singletons.
Therefore, we focus on linear cost functions in this paper.

As discussed before, we adopt the standard assumption
that each disutility function fi(xi) is strictly convex and
twice continuously differentiable [15], [16] while the system
cost function J(x⃗) is convex and locally Lipschitz2. Hence,
it is easy to see that the entire objective function is strictly
convex and locally Lipschitz, which implies the existence of
a unique global minimizer x⃗⋆ to problem (2) [18, Proposition
3.1.1]. By [19, Theorem 8.2], x⃗⋆ is such a minimizer if and
only if

0 ∈ ∂

(∑
i∈N

fi(x
⋆
i ) + J(x⃗⋆)

)
= (∇fi(x

⋆
i ), i ∈ N ) + ∂J(x⃗⋆) , (3)

where the equality is due to the sum rule of the generalized
gradient for convex functions [20, Chapter 2.4]. The so-called
generalized gradient is a counterpart to gradient for nons-
mooth functions, which is often known to be subdifferential
by optimization community. As mentioned in Assumption 1,
J(x⃗) is continuous but it is not differentiable everywhere,
which forces us to borrow the generalized gradient concept.

2Every convex function is locally Lipschitz [17]. We list locally Lipschitz
property explicitly for the purpose of emphasis.
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Definition 1 (Generalized gradient [20]). If g : Rd 7→ R is
a locally Lipschitz continuous function, then its generalized
gradient ∂g : Rd 7→ B(Rd) at z ∈ Rd is defined by3

∂g(z) := co

{
lim
k→∞

∇g(zk) : zk → z, zk /∈ Ωg ∩ S
}

,

where co denotes convex hull, Ωg ⊂ Rd denotes the set of
points where g fails to be differentiable, and S ⊂ Rd is a
set of measure zero that can be arbitrarily chosen to simply
the computation.

Remark 2 (Relation to gradient). Unlike a gradient which
gives a single vector, a generalized gradient is a set-valued
map. The generalized gradient is the generalization of the
gradient in the sense that, if g is differentiable at z, then
∂g(z) = {∇g(z)}.

However, in practice, the planner’s optimization problem
in (2) is not implementable due to the lack of knowledge of
the exact disutility functions of users for privacy concerns.
This poses challenges for the system operator to realize
economic dispatch by solving (2) directly. An important way
to address this issue by the system operator is to update its
power price pi ∈ R for individual users iteratively based on
how users adjust their desired power. By doing so, the system
operator hopes to encourage users to align their individual
goals of cost minimization with the goal of problem (2). The
design of such an adaptive price update will be discussed
later, which is the core of this paper.

B. User’s Optimization Problem

All users are assumed to be rational price takers. More
precisely, given the power price pi, each user i adjusts its
power consumption by solving the following optimization
problem:

min
xi

fi(xi) + pixi , (4)

which minimizes the total cost of user i induced by disu-
tility and payment for power consumption. Since (4) is an
unconstrained convex optimization problem, the necessary
and sufficient condition for x∗

i to be a minimizer is [21,
Chapter 4.2.3]

∇fi(x
∗
i ) + pi = 0 , (5)

which yields a unique global solution x∗
i by the strict

convexity of fi(xi) [18, Proposition 3.1.1]. Basically, as the
system operator updates its price signal pi, user i adjusts its
power demand x∗

i accordingly to satisfy (5) in a unique way.
To put it another way, for any given price pi, the demand
x∗
i is unique. Hence, x∗

i is clearly a function [22, Definition
2.1] of the current price pi and can be expressed as

x∗
i (pi) := argmin

xi

fi(xi) + pixi .

3Throughout this paper, we use B(Rd) to denote the collection of all
subsets of Rd and B(z; ϵ) to denote the open ball centered at z ∈ Rd with
radius ϵ > 0.

An important feature of this function x∗
i (pi) is that it is a

continuously differentiable and strictly decreasing function,
which is highlighted by the following lemma.

Lemma 1 (Bijective demand update). Under Assumption 1,
the demand update x∗

i (pi) is a bijection given by a contin-
uously differentiable and strictly decreasing function

x∗
i (pi) = ∇−1fi(−pi) , (6)

which naturally has the properties that ∇x∗
i (pi) < 0 and,

∀p̃i, p̂i ∈ R, if p̃i ̸= p̂i, then x∗
i (p̃i) ̸= x∗

i (p̂i).

Proof. First, by [23, Theorem 2.14], the strict convexity of
fi(xi) ensures that its gradient ∇fi(xi) is a strictly in-
creasing function. Then, this strict monotonicity implies that
∇fi(xi) is a bijection, which further implies that ∇fi(xi)
has a unique inverse function written as ∇−1fi that is also a
bijection. Now, we note that, as an optimal solution, x∗

i (pi)
must satisfy (5), i.e.,

∇fi(x
∗
i (pi)) + pi = 0 . (7)

Since ∇−1fi is well-defined, we are allowed to represent
x∗
i (pi) in (7) as (6), from which it is easy to see that x∗

i (pi)
is a bijection since ∇−1fi is a bijection.

Moreover, an important property of any bijective function
is that it is one-to-one, which means that every element in
the codomain is mapped to by at most one element in the
domain. Thus, ∀p̃i, p̂i ∈ R, if x∗

i (p̃i) = x∗
i (p̂i), then p̃i =

p̂i, which is logically equivalent to the contrapositive, i.e.,
∀p̃i, p̂i ∈ R, if p̃i ̸= p̂i, then x∗

i (p̃i) ̸= x∗
i (p̂i).

Finally, we would like to show that x∗
i (pi) is a con-

tinuously differentiable function. By Assumption 1, fi(xi)
is twice continuously differentiable, which implies that
∇fi(xi) is continuously differentiable. That is, ∇2fi(xi)
exists everywhere and is continuous. As mentioned in the
beginning of the proof, ∇fi(xi) is strictly increasing, which
implies that ∇2fi(xi) > 0 everywhere. By inverse func-
tion theorem, ∇−1fi is continuously differentiable and its
derivative at (−pi) is given by 1/∇2fi(∇−1fi(−pi)) =
1/∇2fi(x

∗
i (pi)) > 0 since ∇2fi(xi) > 0 every-

where. Thus, ∇x∗
i (pi) = −1/∇2fi(∇−1fi(−pi)) =

−1/∇2fi(x
∗
i (pi)) < 0, which is clearly continuous since

∇2fi(xi) is continuous. This concludes the proof that x∗
i (pi)

is continuously differentiable and strictly decreasing.

Lemma 1 shows that the demand update x∗
i (pi) is a

bijective function which naturally enjoys a nice property.
That is, ∀p̃i, p̂i ∈ R, if p̃i ̸= p̂i, then x∗

i (p̃i) ̸= x∗
i (p̂i),

which means that it is impossible for distinct price signals to
motivate the same power demand. As the analysis will unfold
later, this “uniqueness” plays a role in the convergence of the
pricing mechanism which we will propose.

Therefore, our goal is to design a suitable update for price
profile p⃗ := (pi, i ∈ N ) ∈ Rn which can leverage the nice
demand update x⃗∗(p⃗) := (x∗

i (pi), i ∈ N ) ∈ Rn induced by
individual user’s optimization problem (4) in each iteration
to gradually gear the demand profile x⃗ of users toward
the minimizer of (2) after enough iterations. This incentive
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pricing mechanism allows the system operator to achieve
the desired solution to the planner’s optimization problem
(2) without solving it directly.

III. ADAPTIVE PRICE UPDATE UNDER NONSMOOTHNESS

In terms of incentive pricing mechanism, our recent work
[10] proposes for a similar but simpler setting to adopt price
dynamics utilizing the gradient information of the system
cost function J(·) to incentivize users to adjust their power
consumption towards a point where the planner’s problem
and user’s problem are simultaneously solved. However, the
underlying assumption that J(·) is smooth does not hold in
our case due to the particular choice of J(·) as (1) which
makes J(·) convex and locally Lipschitz but not differen-
tiable everywhere. Thus, we propose an adaptive price update
by leveraging the generalized gradient in Definition 1 as
follows:

˙⃗p ∈ ∂J(x⃗∗(p⃗))− p⃗ . (8)

This is well-defined since the fact that J(x⃗) is a locally Lip-
schitz continous function ensures that J(x⃗) has a nonempty
compact set as its generalized gradient at any x⃗ ∈ Rn [24,
Proposition 6].

Based on (8), we now illustrate the incentive pricing
mechanism in more detail. As shown in Fig. 1, we consider a
two-timescale design of incentive pricing mechanism, where
individual users solve (4) for x∗

i (pi) much faster than the
system operator updates the price p⃗ via (8). This timescale
separation allows users to consider the price signal p⃗ as
static when solving for x⃗∗(p⃗). Thus, following any given
price p⃗ provided by the system operator, users adjust their
power consumption towards x⃗∗(p⃗) almost immediately by
solving (5) and then the system operator updates the price
p⃗ according to (8) in response to the current demand profile
x⃗∗(p⃗). It should be intuitively clear that (8) provides users
with incentives to align their own interests with social
welfare, given that adjustments to p⃗ intend to reduce the
difference between the marginal cost of the individual user
quantified by p⃗ and the marginal cost of the system operator
characterized by ∂J(x⃗∗(p⃗)).

xi

x1 xn

p1

pi

pn
x∗
n(pn)

x∗
i (pi)

x∗
1(p1)

!̇p ∈ ∂J(!x∗(!p))− !p
System Operator: 
slow-scale update

User: 
fast-scale update

Fig. 1: Two-timescale design of incentive pricing mechanism.

With this in mind, as the system operator iteratively
updates the price p⃗, the nonsmooth dynamical system com-
posed of (5) and (8) ideally should settle down at a point
that achieves the optimal solution to the planner’s optimiza-
tion problem (2). That is, at the equilibrium price p⃗⋆ :=

(p⋆
i , i ∈ N ) ∈ Rn, we would like to have x⃗∗(p⃗⋆) satisfy

(3), which is captured by the following theorem.

Theorem 1 (Unique equilibrium with incentive aligned).
Under Assumption 1, the demand profile x⃗∗(p⃗⋆) occurring
at the unique equilibrium price p⃗⋆ of the dynamical system
composed of (5) and (8) is the unique global minimizer to
the planner’s optimization problem (2), i.e.,

0 ∈ ∂J(x⃗∗(p⃗⋆)) + (∇fi(x
∗
i (p

⋆
i )), i ∈ N ) . (9)

Proof. The point p⃗⋆ is an equilibrium of the price update
(8) if and only if [20, Chapter 4.4]

0 ∈ ∂J(x⃗∗(p⃗⋆))− p⃗⋆ . (10)

Note that x⃗∗(p⃗⋆) generated from the demand update satisfies
(5), i.e.,

∇fi(x
∗
i (p

⋆
i )) + p⋆

i = 0 , ∀i ∈ N ,

from which we know

p⃗⋆ = − (∇fi(x
∗
i (p

⋆
i )), i ∈ N ) . (11)

Substituting (11) into (10) yields (9), which is exactly in
the form of the optimality condition (3) for the planner’s
optimization problem (2). Thus, x⃗∗(p⃗⋆) corresponding to the
equilibrium price p⃗⋆ is the unique global minimizer to (2).
Now, it remains to show that the equilibrium price p⃗⋆ is
unique. By way of contradiction, suppose that both p⃗⋆ and
p⃗◦ satisfy (10), where p⃗⋆ ̸= p⃗◦. Then, by a similar argument
as above, we know that both x⃗∗(p⃗⋆) and x⃗∗(p⃗◦) must satisfy
the optimality condition (3). Thus, x⃗∗(p⃗⋆) and x⃗∗(p⃗◦) are
both optimizers of problem (2). Notably, by Lemma 1, our
assumption p⃗⋆ ̸= p⃗◦ directly implies x⃗∗(p⃗⋆) ̸= x⃗∗(p⃗◦).
Therefore, we now reach a situation where there are two
distinct optimizers to problem (2), which contradicts the fact
that problem (2) has a unique minimizer. This concludes the
proof of the uniqueness of the equilibrium price p⃗⋆.

Theorem 1 verifies that the proposed incentive pricing
mechanism is guaranteed to settle down at a unique equilib-
rium price p⃗⋆ whose corresponding demand profile x⃗∗(p⃗⋆)
is exactly the unique global minimizer to the planner’s
optimization problem (2). In other words, by adopting the
proposed adaptive price update, the system operator can
encourage users to align their individual benefits with the
social welfare. Thus, the system objective of economic
dispatch is achieved without disclosure of user privacy.

IV. NONSMOOTH STABILITY ANALYSIS

Having characterized the equilibrium point and confirmed
the incentive alignment at that point, we are now ready to
investigate the stability of the nonsmooth dynamical system
composed of the demand update (5) and the price update
(8) by performing the natural extension of Lyapunov stabil-
ity analysis provided in [24, Theorem 1]. More precisely,
the stability under the incentive pricing mechanism can be
certified by finding a well-defined Lyapunov function that is
decreasing along the trajectories of the system comprising (5)
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and (8). The main result of this section is presented below,
whose proof is enabled by a sequence of intermediate results
that we discuss next.

Theorem 2 (Asymptotic stability). Under Assumption 1,
the dynamical system composed of (5) and (8) is strongly
asymptotically stable at the unique equilibrium characterized
by (9).

Of course, before showing the stability of the system,
we need to show that the dynamical system has a solution.
Here, we take the solution to be in the Caratheodory sense,
which roughly says that, under some assumptions, there
is a trajectory that satisfies (5) and (8) except for a set
of time t that has Lebesgue measure zero [24]. The key
for checking sufficient conditions for the existence of a
Caratheodory solution here is to check whether the set-valued
map p⃗ 7→ [∂J(x⃗∗(p⃗))− p⃗] in (8) has several properties [24,
Proposition S2].

Since ∂J(x⃗∗(p⃗)) involves the composition of functions,
we develop the following lemma to facilitate our analysis.

Lemma 2 (Property preservation in composition). Assume
that h : Rm 7→ Rd is continuous at z ∈ Rm and u is the
composite of h and g : Rd 7→ B(Rd) defined by

u(z) := (g ◦ h)(z) := g(h(z)) . (12)

• If g : Rd 7→ B(Rd) is upper semicontinuous at h(z) ∈ Rd,
then u is upper semicontinuous at z.

• If g : Rd 7→ B(Rd) is locally bounded at h(z) ∈ Rd, then
u is locally bounded at z.

Proof. We study the two cases separately.
For upper semicontinuity of a set-valued map [24], we

need to show that, ∀ϵ > 0, ∃δ > 0 such that

u(z̃) ⊂ u(z) +B(0; ϵ) , ∀z̃ ∈ B(z; δ) . (13)

To this end, we first note that, if g is upper semicontinuous
at h(z) ∈ Rd, for any given ϵ > 0, ∃η > 0 such that,
whenever y ∈ B(h(z); η), it holds that [24]

g(y) ⊂ g(h(z)) +B(0; ϵ) . (14)

Next, since h is continuous at z ∈ Rm, for any given η > 0,
∃δ > 0 such that, whenever z̃ ∈ B(z; δ), it holds that [22,
Definition 4.5]

h(z̃) ∈ B(h(z); η) .

Now, we combine the above two arguments by setting y =
h(z̃) in (14), which yields

g(h(z̃)) ⊂ g(h(z)) +B(0; ϵ) , ∀z̃ ∈ B(z; δ) . (15)

Finally, from (12), we know g(h(z̃)) = u(z̃) and g(h(z)) =
u(z), which combined with (15) gives exactly the claim (13)
that we would like to prove.

For local boundedness of a set-valued map [24], we need
to show that, ∃δ > 0 and some constant M > 0 such that

∥µ∥2 ≤ M , ∀z̃ ∈ B(z; δ),µ ∈ u(z̃) . (16)

With this aim, we first note that, if g is locally bounded at
h(z) ∈ Rd, ∃η > 0 and some constant M > 0 such that [24]

∥µ∥2 ≤ M , ∀y ∈ B(h(z); η),µ ∈ g(y) . (17)

Again, since h is continuous at z ∈ Rm, for any given η > 0,
∃δ > 0 such that [22, Definition 4.5]

h(z̃) ∈ B(h(z); η) , ∀z̃ ∈ B(z; δ) . (18)

Now, we combine the above two arguments by setting y =
h(z̃) in (17), which yields

∥µ∥2 ≤ M ,∀z̃ ∈B(z; δ), h(z̃) ∈B(h(z); η),µ ∈ g(h(z̃)) .

Here, the second condition can be removed since it is directly
implied by the first condition due to (18), which yields

∥µ∥2 ≤ M , ∀z̃ ∈ B(z; δ),µ ∈ g(h(z̃)) . (19)

Finally, from (12), we know g(h(z̃)) = u(z̃), which substi-
tuted into (19) gives exactly the claim (16) that we would
like to prove.

Lemma 2 paves us a way to show the existence of a
Caratheodory solution of our dynamical system by checking
conditions in [24, Propostion S2], which is the core of the
next lemma.

Lemma 3 (Existence of a Caratheodory solution). Under
Assumption 1, there exists a Caratheodory solution of the
dynamical system composed of (5) and (8) for any initial
condition p⃗(0).

Proof. Basically, by [24, Propostion S2], it suffices to show
that the set-valued map p⃗ 7→ [∂J(x⃗∗(p⃗))−p⃗] takes nonempty
compact convex values and is also upper semicontinuous as
well as locally bounded4.

Clearly, it is the term ∂J(x⃗∗(p⃗)) associated with the
generalized gradient in the above mapping that makes our
dynamics different from differential equations. Thus, we
focus our analysis on properties of ∂J(x⃗∗(p⃗)), which is a
composition of ∂J(x⃗) and x⃗∗(p⃗).

We start by investigating ∂J(x⃗). Based on [24, Proposition
6], it follows directly from the local Lipschitz continuity of
J(x⃗) that ∂J(x⃗) is a nonempty compact convex set at any x⃗
and the set-valued map x⃗ 7→ ∂J(x⃗) is upper semicontinuous
and locally bounded at any x⃗.

As for x⃗∗(p⃗) := (x∗
i (pi), i ∈ N ), it is a continuous

vector-valued function since each component x∗
i (pi) is a

continuous function by Lemma 1 [25, Theorem 2.4].
With above information about ∂J(x⃗) and x⃗∗(p⃗), we are

now ready to examine properties of ∂J(x⃗∗(p⃗)). First, given
that ∂J(x⃗) is a nonempty compact convex set at any x⃗, it
must be true that ∂J(x⃗∗(p⃗)) is a nonempty compact convex
set at any p⃗ as well since x⃗∗(p⃗) is a bijective function by
Lemma 1. This can be understood by noting that, no matter
what particular value the price signal p⃗ is taking, ∂J(x⃗)
will take a corresponding value x⃗ = x⃗∗(p⃗) at that p⃗, which

4There is not need to check measurability here since (8) does not
explicitly depend on time t.
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must produce a nonempty compact convex set ∂J(x⃗∗(p⃗)).
Second, the upper semicontinuity and local boundedness of
∂J(x⃗∗(p⃗)) at any p⃗ follow from Lemma 2 by setting h =
x⃗∗(p⃗) which is continuous and g = ∂J(x⃗) which is upper
semi-continuous and locally bounded.

Finally, the term (−p⃗) has no influence to the above
properties. First, it only translates the nonempty compact
convex set ∂J(x⃗∗(p⃗)) by (−p⃗), which is still a nonempty
compact convex set. Thus, p⃗ 7→ [∂J(x⃗∗(p⃗)) − p⃗] takes
nonempty compact convex values. Second, it can be con-
sidered as a continuous function which is inherently upper
semicontinuous and locally bounded at p⃗. Since the sum-
mation of two upper semicontinuous functions is still upper
semicontinuous and the summation of two locally bounded
functions is still locally bounded. Thus, p⃗ 7→ [∂J(x⃗∗(p⃗))−p⃗]
is also upper semicontinuous and locally bounded. The result
follows from [24, Propostion S2].

After determining the existence of a Caratheodory solution
of the system from any initial point through Lemma 3, we
now examine the nonsmooth system stability by constructing
a candidate Lyapunov function. According to [24, Theorem
1], we need to first seek a locally Lipschitz and regular
function V (p⃗) that satisfies V (p⃗⋆) = 0 and V (p⃗) > 0,
∀p⃗ ̸= p⃗⋆, and then verify its monotonic evolution along the
system trajectories, which is more complicated compared to
a standard analysis since we need to study the Lie derivative
in a nonsmooth setting.

We consider the following Lyapunov function candidate:

V (p⃗) := C(x⃗∗(p⃗))− C(x⃗∗(p⃗⋆)) , (20)

where C(·) denotes the objective function of the planner’s
optimization problem (2) and p⃗⋆ corresponds to the unique
equilibrium point of the system satisfying (9). The next
result shows that this is a well-defined Lyapunov function
candidate.

Lemma 4 (Well-defined Lyapunov function). Under As-
sumption 1, V (p⃗) defined in (20) is a locally Lipschitz and
regular function that satisfies V (p⃗⋆) = 0 and V (p⃗) > 0,
∀p⃗ ̸= p⃗⋆.

Proof. As discussed in Section II-A, the entire objective
function C(x⃗) of the planner’s optimization problem (2) is
locally Lipschitz and strictly convex, which together with
the continuous differentiability of each x∗

i (pi) by Lemma 1
allows us to show that V (p⃗) is locally Lipschitz and regular.
We now illustrate this in detail.

We begin with the local Lipschitz continuity of C(x⃗∗(p⃗)).
Clearly, the continuous differentiability of each x∗

i (pi) im-
plies that each x∗

i (pi) is locally Lipschitz [26, Chapter 17.2].
Now, since each component of x⃗∗(p⃗) := (x∗

i (pi), i ∈ N )
is locally Lipschitz and C(x⃗) is locally Lipschitz as well,
their composition C(x⃗∗(p⃗)) is locally Lipschitz by the chain
rule [24].

We next investigate the regularity of C(x⃗∗(p⃗)). First of
all, x⃗∗(p⃗) := (x∗

i (pi), i ∈ N ) is a continuously differen-
tiable vector-valued function since each component x∗

i (pi)

is a continuously differentiable function [27, Theorem 2.8].
Moreover, C(x⃗) is locally Lipschitz and strictly convex,
which further ensures that C(x⃗) is regular [20, Proposition
2.4.3]. By [28, Theorem 8.18], as a composite of x⃗∗(p⃗) and
C(x⃗), C(x⃗∗(p⃗)) is regular.

The conclusion that V (p⃗) is locally Lipschitz and regular
can be trivially drawn if one notices that the other term of
V (p⃗) in (20) is just a constant.

Clearly, V (p⃗⋆) = 0 by construction. To see why V (p⃗) >
0, ∀p⃗ ̸= p⃗⋆, we first note that x⃗∗(p⃗⋆) is the unique global
minimizer to problem (2) by Theorem 1, which means that

∀x⃗ ̸= x⃗∗(p⃗⋆) , C(x⃗) > C(x⃗∗(p⃗⋆)) . (21)

Moreover, we know from Lemma 1 that, ∀p⃗ ̸= p⃗⋆, it holds
that x⃗∗(p⃗) ̸= x⃗∗(p⃗⋆). Therefore, setting x⃗ = x⃗∗(p⃗) in
(21), we get C(x⃗∗(p⃗)) > C(x⃗∗(p⃗⋆)), i.e., C(x⃗∗(p⃗)) −
C(x⃗∗(p⃗⋆)) > 0, which is equivalent to V (p⃗) > 0 by our
construction of V (p⃗) in (20). This confirms that V (p⃗) > 0,
∀p⃗ ̸= p⃗⋆, as desired.

Next, we turn to verify the monotonic evolution of V (p⃗)
along the system trajectories by the notion of Lie derivative
in the nonsmooth setting, which requires max L̃V (p⃗) < 0,
∀p⃗ ̸= p⃗⋆, with L̃V (p⃗) being the set-valued Lie derivative of
V regarding [∂J(x⃗∗(p⃗)) − p⃗] in (8) at p⃗ defined by [24],
[29]

L̃V (p⃗) :=
{
a ∈ R : ∃v ∈ ∂J(x⃗∗(p⃗))− p⃗ such that

ζTv = a,∀ζ ∈ ∂V (p⃗)
}
. (22)

Lemma 5 (Negativity of Lie derivative). Under Assump-
tion 1, the set-valued Lie derivative of V (p⃗) defined in (22)
satisfies max L̃V (p⃗) < 0, ∀p⃗ ̸= p⃗⋆.

Proof. Before delving into L̃V (p⃗), we need to characterize
∂V (p⃗) which can be computed as

∂V (p⃗) = ∂(C ◦ x⃗∗)(p⃗)

1
= ∇x⃗∗(p⃗)∂C(x⃗∗(p⃗))

:=
{
∇x⃗∗(p⃗)η : η ∈ ∂C(x⃗∗(p⃗))

}
=
{
diag(∇x∗

i (pi), i∈N )η : η∈∂C(x⃗∗(p⃗))
}
. (23)

In 1 , the chain rule of the generalized gradient [28, Theorem
8.18] can be used with equality since, as discussed in the
proof of Lemma 4, the conditions that C(x⃗) is locally
Lipschitz and regular and that x⃗∗(p⃗) is continuously dif-
ferentiable both hold.

To get a more explicit expression for (23), we now derive
∂C(x⃗∗(p⃗)) as

∂C(x⃗∗(p⃗)) = ∂

(∑
i∈N

fi(x
∗
i (pi)) + J(x⃗∗(p⃗))

)
=(∇fi(x

∗
i (pi)), i ∈ N ) + ∂J(x⃗∗(p⃗))

= ∂J(x⃗∗(p⃗))− p⃗ , (24)

where the first equality is due to the definition of C(x⃗) in (2),
the second equality is due to the sum rule of the generalized
gradient for convex functions [20, Chapter 2.4] as mentioned
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in Section II-A, and the last equality uses the relation that
(∇fi(x

∗
i (pi)), i ∈ N ) = −p⃗ resulting from the optimality

condition (7) of user’s problem as discussed in the proof of
Lemma 1.

Substituting (24) to (23) yields

∂V (p⃗) =
{
diag(∇x∗

i (pi),i ∈ N )η :

η ∈ ∂J(x⃗∗(p⃗))− p⃗
}
, (25)

which will be applied to (22) for investigating the sign of
max L̃V (p⃗). The challenging part is that J(·) is continuous
but not differentiable everywhere, which means that there
exists a set of points of p⃗ for which J(·) fails to be differen-
tiable at the corresponding x⃗∗(p⃗). For the ease of notation,
we denote such a set of p⃗ as ΩJ(x⃗∗(p⃗)) ⊂ Rn. Note that we
only care about points p⃗ different from the equilibrium p⃗⋆

in this particular analysis, which are p⃗ satisfying

0 /∈ ∂J(x⃗∗(p⃗))− p⃗ (26)

by (10) in the proof of Theorem 1. This allows us to consider
two cases based on whether p⃗ ̸= p⃗⋆ is in ΩJ(x⃗∗(p⃗)) or not.

1) If p⃗ ̸= p⃗⋆ and p⃗ /∈ ΩJ(x⃗∗(p⃗)): The generalized gradient
∂J(x⃗∗(p⃗)) reduces to a singleton, i.e.,

∂J(x⃗∗(p⃗)) =
{
∇J(x⃗∗(p⃗))

}
. (27)

Thus, ∂V (p⃗) in (25) reduces to a singleton as well, i.e.,

∂V (p⃗) =
{
diag(∇x∗

i (pi), i ∈ N )F (p⃗)
}

(28)

with
F (p⃗) := ∇J(x⃗∗(p⃗))− p⃗

in this case, which together with (27) simplifies (22) to

L̃V (p⃗)

=
{
a ∈ R : ∃v∈{F (p⃗)} such that ζTv = a,

∀ζ ∈
{
diag(∇x∗

i (pi), i ∈ N )F (p⃗)
}}

=
{
(diag(∇x∗

i (pi), i ∈ N )F (p⃗))
T
F (p⃗)

}
=
{
F (p⃗)Tdiag(∇x∗

i (pi), i ∈ N )F (p⃗)
}
. (29)

We claim that

F (p⃗)Tdiag(∇x∗
i (pi), i ∈ N )F (p⃗) < 0 (30)

for two reasons. First, diag(∇x∗
i (pi), i ∈ N ) ≺ 0 since

each ∇x∗
i (pi) < 0 by Lemma 1. Second, since p⃗ ̸= p⃗⋆,

we know from (26) that F (p⃗) ̸= 0. Then, (30) follows
directly. Combining (29) and (30), we know

max L̃V (p⃗) = F (p⃗)Tdiag(∇x∗
i (pi), i ∈ N )F (p⃗)< 0 .

2) If p⃗ ̸= p⃗⋆ and p⃗ ∈ ΩJ(x⃗∗(p⃗)): Substituting (25) to (22)
yields

L̃V (p⃗) (31)

=
{
a ∈ R : ∃v∈∂J(x⃗∗(p⃗))− p⃗ such that ζTv = a,

∀ζ∈
{
diag(∇x∗

i (pi), i∈N )η : η∈∂J(x⃗∗(p⃗))−p⃗
}
.

If L̃V (p⃗) = ∅, then max L̃V (p⃗) = −∞ by conven-
tion [24]. If L̃V (p⃗) ̸= ∅, we claim that, ∀a ∈ L̃V (p⃗)

in (31), a < 0. To see this, we first note that, for any
such a, ∃v∈∂J(x⃗∗(p⃗))− p⃗, such that ζTv = a, ∀ζ∈{
diag(∇x∗

i (pi), i∈N )η : η∈∂J(x⃗∗(p⃗))−p⃗
}

. Clearly,
we can pick η = v and then ζ = diag(∇x∗

i (pi), i ∈
N )v to solve for

a = ζTv = (diag(∇x∗
i (pi), i∈N )v)Tv

= vTdiag(∇x∗
i (pi), i∈N )v < 0 .

Here, the inequality is due to a similar argument for the
previous case. That is, diag(∇x∗

i (pi), i ∈ N ) ≺ 0 and
v ̸= 0 from (26). Now, we have shown that, if L̃V (p⃗) ̸=
∅, ∀a ∈ L̃V (p⃗) in (31), a < 0, which ensures that
max L̃V (p⃗) < 0. Therefore, no matter whether L̃V (p⃗)
is empty or not, it must be true that max L̃V (p⃗) < 0.

In sum, max L̃V (p⃗) < 0, ∀p⃗ ̸= p⃗⋆.

According to [24, Theorem 1], with the aid of Lemmas 3,
4, and 5, we now have all the elements necessary to establish
the strongly asymptotical stability of the unique equilibrium
as summarized in Theorem 2.

V. NUMERICAL ILLUSTRATIONS

In this section, we present simulation results to show the
convergence of our proposed incentive pricing mechanism
to the desired optimal solution to the global social welfare
problem. The simulations are conducted on the IEEE 14-
bus system, which contains 5 generators and 20 transmission
lines. The generation cost of each generator is assumed to be
linear as in (1), with cost coefficient ci generated uniformly
at random from [5, 20]. We assume that there is one user on
each bus and each user i has disutility fi(xi) = (xi − x̄i)

2,
where x̄i is some constant that represents, for example, the
targeted consumption of user i.

In order to achieve the optimal solution to the global
social welfare problem (2) without solving it directly, we
randomly initialize the price signal for individual users from
[5, 15] and run our proposed incentive pricing mechanism,
whose dynamics together with the evolution of user demand
profile are provided in Fig. 2. Obviously, both price signals
p⃗ and user demands x⃗ converge very fast. Particularly, x⃗
successfully converges to the optimal solution of problem
(2). Note that the cost on each bus might converge to one of
a few values, which is typical when a small number of lines
are congested [30].

VI. CONCLUSIONS AND OUTLOOK

This paper extends adaptive pricing mechanisms for social
welfare optimization to network-constrained energy systems
with nonsmooth cost structures. By embedding DCOPF
constraints into the operator’s objective and introducing a
generalized gradient-based price update rule, we establish
a provably convergent and privacy-preserving incentive de-
sign framework. Our theoretical analysis demonstrates the
existence, uniqueness, and strong asymptotic stability of the
equilibrium at which the global social welfare is achieved.
Simulation results validate the effectiveness of the proposed
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Fig. 2: Convergence of price signals and user demands of our
proposed mechanism in IEEE 14-bus system with 14 users,
where the dashed lines represent the optimal demand profile
to the global social welfare problem.

mechanism in guiding user behavior toward globally optimal
outcomes under realistic power network constraints.

Looking ahead, several important extensions remain open.
First, practical systems are subject to uncertainty from re-
newable generation and stochastic user demand. Extending
the current framework to handle uncertainty explicitly, either
through robust or stochastic formulations of DCOPF, is
a natural next step. Second, applying the method to AC
power flow models would enhance its applicability to real-
world grids, though this introduces significant nonconvexity.
Third, while our current pricing update relies on analytical
computation of generalized gradients, a promising direction
is to develop data-driven or learning-based approximations
for the operator’s update rule, especially in settings where
exact DCOPF gradients are computationally expensive or
unavailable in real time. Finally, although our current results
focus on the single time-step case, extending the convergence
and stability guarantees to multi-time-step scenarios is an
important direction for future work, especially for dynamic
and time-coupled systems.
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