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Abstract—This article studies the operation of an elec-
tricity market that accounts for participants who bid at
a subminute timescale. To that end, we model the mar-
ket clearing process as a dynamical system, called mar-
ket dynamics, which is temporally coupled with the grid
frequency dynamics and is thus required to guaran-
tee system-wide stability while meeting operational con-
straints. We characterize participants as price-takers who
rationally update their bids to maximize their utility in re-
sponse to real-time schedules of prices and dispatch. For
two common bidding mechanisms, based on quantity and
price, we identify a notion of alignment between partici-
pants’ behavior and a grid planner’s goals, leading to a
saddle-based design of market dynamics that guarantees
convergence to an operating point achieving economic effi-
ciency and incentive compatibility subject to all operational
constraints. We further explore cases where this alignment
property does not hold and observe that misaligned partic-
ipants’ bidding can destabilize the closed-loop system. We
thus design a regularized version of market dynamics that
recovers all the desirable stability and steady-state perfor-
mance guarantees. Numerical tests validate our results on
the IEEE 39-bus system.

Index Terms—Asymptotic stability, economic dispatch,
frequency control, market dynamics, saddle flow dynamics.

I. INTRODUCTION

E LECTRICITY markets aim to foster competition by
allowing participants to make individual bids in the market
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clearing process [2]. With the shift of electricity generation
mix toward intermittent renewables, electricity markets have
to exploit resources with fast-acting capabilities to account for
power balance. In order to incentivize the participation of such
resources, markets, which are usually cleared at least every 5 min
for economic dispatch, are required to operate at a faster, e.g.,
subminute, timescale. Faster market clearing provides a poten-
tial solution by 1) increasing flexibility to better accommodate
the increasing system variability, and 2) increasing efficiency
with finer granularity economic dispatch. However, such a fast-
timescale market operation could interfere with the grid relia-
bility, when market actions interact with the electromechanical
swings of generators [3], thus raising concerns of grid operators.

Fast-timescale markets therefore have to further account for
stability issues while pursuing economic efficiency. This inter-
play, between physics (grid dynamics) and economics (mar-
ket operation), overlaps with the existing cross-timescale fre-
quency control architectures of grid operators [4], [5]: primary—
frequency regulation (tens of seconds), secondary—nominal
frequency restoration (around 1 min), and tertiary—economic
dispatch (at least 5 min). While there have been many recent
efforts to integrate these temporally decoupled architectures, ex-
ploiting hierarchical structures and optimization decomposition
across space [6], [7], [8], [9], [10], [11], [12], [13] and time [14],
such approaches follow an engineering perspective and render
control laws on participants that do not necessarily reflect their
individual economic incentives.

Instead, in this work, we take into account participants’ in-
centives and seek to incorporate the cross-timescale goals of
frequency control in the market clearing process. In this setting,
participants can bid in real time, and the market undertakes
the role of ensuring economic efficiency and meeting a wide
set of operational constraints (frequency regulation, power flow
bounds, etc.) via pricing and dispatching. In particular, we aim
to design a fast-timescale subminute market that uses market
signals as control signals and thereby operates as a controller.
Thus, the market rules can be seen as a dynamical system, which
is usually referred to as market dynamics [3], [15], [16], [17],
[18], [19]. The fundamental challenge for such a market is to
simultaneously account for the physical response of the power
grid and the economic incentives of its participants, e.g., genera-
tors. We model market dynamics with bids, based on quantity or
price, as inputs, reflecting participants’ preferences, and prices
and dispatch as outputs. The market is dynamically coupled with
participants (that bid according to their own preferences) and
the power grid (that is constrained by Newton’s and Kirchhoff’s
laws).
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The notion of market dynamics was first introduced in [3],
where a dynamic pricing signal reflecting a filtered version of
system energy imbalance is proposed. Any excess (respectively,
shortage) of power supplied is viewed as depressing (respec-
tively, lifting) its value. In that setting, generators and loads
respond to this signal by adjusting generation and consumption,
which in turn changes the energy imbalance and thus affects
the price. This work pioneered the study of the grid–market–
participant interplay, yet it did not provide an explicit eco-
nomic interpretation of this price signal and the corresponding
participants’ response. Since then, follow-up work has aimed
at accommodating more physical constraints [15], [16], [17],
including congestion management [17], as well as providing
control theoretical guarantees, including delays [18] and discrete
updates [19]. However, they are still predicated on the similar
ad hoc designs that lack economic guarantees of efficiency and
incentive compatibility.

Recently, designs for dynamic price signals, based on La-
grange dual gradient algorithms of an economic dispatch prob-
lem, have been proposed [20], [21], [22], [23]. These pricing
schemes systematically embody a diverse range of operational
constraints and lead to a principled design with a direct eco-
nomic interpretation of equilibrium prices as well as stability
guarantees. This Lagrangian-based approach further allows mar-
ket participation based on both quantity [20], [21] and price
bids [22], [23], e.g., raising production when prices exceed
marginal costs [20], [21], or lifting prices when dispatch exceeds
desired amounts [22], [23]. However, such techniques only allow
for a limited homogeneous set of individual behavioral laws—
mapping market outcomes to individual bid updates—that are
analyzed on a case-by-case basis without systematic guarantee
of incentive compatibility.

Contributions of This Work: This work builds upon recent
saddle-based distributed optimization study to develop a general
framework for the design and analysis of market dynamics that
account for a wide range of participants’ (rational) bidding
behavior, market efficiency goals, and network operational con-
straints, while preserving system-wide stability and ensuring
incentive compatibility. More precisely, we consider a setting
in which participants receive price and dispatch information
from the current market outcome, and seek to maximize their
individual utility by updating their bids via a version of dynamic
gradient play or best response.

We identify a particular notion of alignment, between partici-
pants’ bidding behavior and a grid planner’s goals, that leads to a
systematic design of market dynamics. Such a design is guaran-
teed to drive the closed-loop system to an equilibrium that 1) is
economically efficient and satisfies all operational constraints
required by the grid planner, and 2) is incentive compatible with
all individual participants. Our alignment condition may be sat-
isfied even when different participants choose different update
strategies. We show that this alignment condition provides a
rational explanation for observations of participants’ behavior in
previous literature, in both quantity [3], [20], [21] and price [22]
bidding settings. More specifically, we find that our alignment
condition is implicitly satisfied in all of these cases. These results
suggest that this framework can provide deeper understanding
of previously proposed methods.

Finally, we investigate an exemplar of rational yet misaligned
price bidding strategy and show that the absence of this align-
ment property can lead to unstable behavior. We thus propose
a more robust version of the proposed market dynamics, based

on regularization, which recovers asymptotic convergence and
desirable steady-state performance of the closed loop. Our so-
lution can be interpreted as an implicit regularization that aims
to penalize the system misalignment, thus driving the system
closer to alignment. We illustrate our results with numerical
simulations on the IEEE 39-bus system.

The rest of this article is organized as follows. Section II
formalizes the grid planner’s goals and sets up the general
framework. Section III defines the notion of alignment and
characterizes the resulting systematic design of market dynam-
ics, with application to the quantity and price bidding settings.
Section IV introduces misaligned bidding behavior and high-
lights the required market modification to restore (approximate)
alignment. Section V presents simulation results that validate
the theory. Finally, Section VI concludes this article.

Notations: Let R, R≥0, and N be the sets of real, nonnegative
real, and natural numbers, respectively. For a finite set H ⊂ N,
its cardinality is denoted as |H|. For a set of scalar variables
{yj , j ∈ H}, its column vector is denoted as yH. The subscript
H might be dropped if the set is clear from the context. Given
vectors y ∈ R|H| and u ∈ R|H|, y ≤ u implies yj ≤ uj ∀j ∈ H.
We define an elementwise projection [y]+u , where

[yj ]
+
uj

=

{
yj , if yj > 0 oruj > 0 holds
0, otherwise. (1)

This projection is nonexpansive in the sense that for any u∗ ≥
0, the following holds:

[y]+u
T
(u− u∗) ≤ yT (u− u∗) (2)

since the elementwise projection is active ([yj ]+uj
= 0) only with

yj ≤ 0 and uj ≤ 0, which still imply [yj ]
+
uj
(uj − u∗j) = 0 ≤

yj(uj − u∗j).
For an arbitrary matrix Y , Y T denotes its transpose. If Y

is symmetric (Y = Y T ), we use Y � 0, Y 	 0, Y 
 0, and
Y ≺ 0 to denote thatY is positive semidefinite, positive definite,
negative semidefinite, and negative definite, respectively. Y −1

is the inverse of Y . 1 is a column vector of all 1’s. In an
abuse of notation, we employ 0 to denote a column vector,
a row vector, or a matrix of all 0’s if its dimension is clear
from the context. Given a column vector of variables y ∈ R|H|,
we use two corresponding diagonal matrices Γy ∈ R|H|×|H| and
T y ∈ R|H|×|H| to denote rates of change and time constants,
respectively, with Γy = T y−1. Their jth diagonal elements are
denoted as γyj and τyj , respectively.

II. PROBLEM FORMULATION AND SETUP

We consider a continuous-time model for the interaction
among grid dynamics, participants’ bidding behavior, and the
electricity market clearing process, i.e., market dynamics. We
focus on the performance of this coupled system, in terms
of steady-state economic dispatch and incentive compatibility,
from the market perspective, and frequency stability, from the
control perspective. For simplicity, we restrict active market
participants to controllable generators and assume that loads are
inelastic, although the framework can be extended to incorporate
elastic consumers and prosumers.

In the following sections, we start with a planner’s prob-
lem formulation that embodies all the target cross-timescale
goals. We also set up the real-time interactive structure of the
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coupled system, followed by our models for rational partici-
pants’ bidding.

A. Planner’s Problem

We adopt the viewpoint of a grid planner to formalize the
cross-timescale economic and frequency control goals in a single
problem. Consider a power network with a connected directed
graph (N , E), where N := {1, 2, . . . , |N |} is the set of nodes
and E ⊂ N ×N is the set of edges connecting nodes. Each node
is usually a bus, while each edge describes a connection between
two buses, e.g., a transmission line. Without loss of generality,
we assume there is only one (aggregate) controllable generator at
each bus. We use (j, k) to denote the line from bus j to bus k. An
arbitrary orientation is applied such that any (j, k) ∈ E implies
(k, j) /∈ E . Each line (j, k) ∈ E is endowed with an impedance
zjk. We further define an incidence matrix C ∈ R|N |×|E| for the
network graph with its elementCj,e = 1 if e = (j, k) ∈ E holds,
Cj,e = −1 if e = (k, j) ∈ E holds, and Cj,e = 0, otherwise.

We first formalize the primary and secondary control goals.
Given a demand vector d :=(dj , j∈N )∈R|N |, modeled by
simultaneous step change disturbances at all buses, we adopt
a linearized dynamical model for the power network in transient
(3a):

θ̇ = ω (3a)

Mω̇ = q − d−Dω − CBCT θ (3b)

where θ := (θj , j ∈ N ) ∈ R|N | denotes bus phase angles,
ω := (ωj , j ∈ N ) ∈ R|N | denotes bus frequencies, and q :=

(qj , j ∈ N ) ∈ R|N | denotes generation dispatch. Here, M :=

diag(Mj , j ∈ N ) ∈ R|N |×|N | represents the generators’ inertia,
and D := diag(Dj , j ∈ N ) ∈ R|N |×|N | summarizes the gener-
ators’ damping or frequency-dependent demand with Dj > 0

in general. B := diag(Bjk, (j, k) ∈ E) ∈ R|E|×|E| characterizes
the sensitivity of each line flow to the phase angle difference
between its two end nodes (cf., [1, Appendix] for the derivation
ofB). Standard assumptions are made to linearize the power flow
equations in (3b): 1) bus voltage magnitudes are fixed constants,
2) lines are lossless, and 3) reactive power is ignored [24]. Note
that the linearized network model (3) implicitly assumes that the
variables θ, ω, and q, as well as the parameter d, are deviations
from their steady-state nominal values prior to the imbalance
caused by d.1 Therefore, ω = 0 represents the nominal fre-
quency (the goal of secondary control), while ω̇ = 0 implies
stabilized frequencies (the goal of primary control).

It will be convenient for the analysis to define θ̃ := CT θ ∈
R|E| as the phase angle differences that determine (deviations
of) line flows Bθ̃ across the network, and rewrite the swing
dynamics (3) in the form

˙̃
θ = CTω (4a)

Mω̇ = q − d−Dω − CBθ̃. (4b)

We then introduce a canonical tertiary control problem that
seeks to find an optimal economic dispatch of generation. At the
steady state of the power network, the stationary frequencies
at the nominal value, i.e., ω = 0 and ω̇ = 0, render (4b) a

1Note that d is unknown, but can be estimated either based on forecasts or
from measurements of real-time bus net power injections q − d−Dω [8].

characterization of the nodal power balance over the network

q − d− CBθ̃ = 0. (5)

We further impose the lower and upper thermal limits F and
F on the (deviations of) line flows:

F ≤ Bθ̃ ≤ F . (6)

Then, the tertiary control (economic dispatch) problem that
minimizes the aggregate generation cost to meet the demand
over the network is given by

min
q,θ̃

1TJ(q) s.t. (5), (6) (7)

where J(q) := (Jj(qj), j ∈ N ) is a column vector-valued func-
tion, with Jj(·) : R �→ R representing the cost function of gen-
erator j.2 We assume that Jj(·) is strictly convex and twice
differentiable.

The problem (7) can be expressed compactly in terms of q
by first rewriting the nodal power balance (5) in terms of the
network power balance

1T
(
q − d− CBθ̃

)
= 1T (q − d) = 0 (8)

where the first equality follows from 1TC = 0. Then, defining
the weighted Laplacian matrix of the power network as L :=
CBCT enables (5) to be reorganized as

q − d = CBθ̃ = CBCT θ = Lθ. (9)

The line flows Bθ̃ can accordingly be expressed in terms of
the bus net power injections q − d

Bθ̃ = BCTL†(q − d) (10)

where L† denotes the Moore–Penrose inverse of L. Here,
BCTL† is the power injection shift matrix of the power net-
work. We further let HT := [(BCTL†)T ,−(BCTL†)T ]T ∈
R2|E|×|N | and F := [F

T
,−FT ]T be the stacked shift matrix

and thermal limit vector, respectively. The resulting equivalent
reformulation of the tertiary control problem (7) is then

min
q

1TJ(q) (11a)

s.t. 1T (q − d) = 0 : λ (11b)

HT (q − d) ≤ F : η ≥ 0 (11c)

where the Kirchhoff’s laws are embedded in the matrix H , and
λ ∈ R, η ∈ R2|E|

≥0 are the respective Lagrange dual variables for
(11b) and (11c). The equivalence between the formulations (7)
and (11) is formally stated below (proof by contradiction).

Lemma 1: q∗ is an optimal solution to (11) if and only if
(q∗, θ̃∗ := CTL†(q∗ − d)) is an optimal solution to (7).

The optimal primal–dual solution (q∗, λ∗, η∗) to (11) leads
to an implicit definition of clearing prices based on the dual
optimizers (λ∗, η∗) [14], given by the locational marginal prices
(LMPs) λ∗ · 1−Hη∗. As guaranteed by the Karush–Kuhn–
Tucker (KKT) conditions of (11), they are incentive compatible
for individual generators in the sense that the clearing prices

2Here, Jj(·) is defined on the deviation of generation. For convenience of
the analysis, we ignore generation capacity constraints. An alternative is to
incorporate them in properly redesigned cost functions [8].
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match the marginal generation costs, i.e., ∇J(q∗) = λ∗ · 1−
Hη∗, where ∇J(q) := (∇Jj(qj), j ∈ N ) is a column vector-
valued function of elementwise increasing gradients ∇Jj(qj).

Adding now the primary and secondary control goals to
the tertiary control problem leads to the following planner’s
problem:

Planner’s problem

min
p,q,ω,θ̃

1TJ(p) +
1

2
ωTDω (12a)

s.t. q = p : α (12b)

1T (q − d) = 0 : λ (12c)

HT (q − d) ≤ F : η ≥ 0 (12d)

q − d−Dω − CBθ̃ = 0 : ν (12e)

where p := (pj , j ∈ N ) ∈ R|N | (used also to denote quantity
bids) here represents more broadly individual output scheduling
of generators and is required to align with market dispatch
through (12b). Note that we abuse the notation to define the La-
grange dual variables α ∈ R|N | (used also to denote price bids),
λ ∈ R, η ∈ R2|E|

≥0 , and ν ∈ R|N | for (12b)–(12e), respectively.
All the cross-timescale control goals are implicitly embedded

in the optimum of the planner’s problem. This fact is character-
ized in the following theorem (proof analogous to those of [1,
Thm. 3.1 and Thm. 3.2] via analysis of the KKT conditions).

Theorem 1: (p∗, q∗, ω∗, θ̃∗) is an optimal solution to (12e) if
and only if p∗ = q∗, ω∗ = 0, and θ̃∗ = CTL†(q∗ − d) hold and
q∗ is an optimal solution to (11).

Corollary 1: The optimum of the planner’s problem realizes
the following:

1) (primary control) frequency stabilization ω̇ = 0, i.e.,
(12e);

2) (secondary control) the nominal frequency ω∗ = 0;
3) (tertiary control) the economic dispatch q∗ of (11);
4) (compatible participants’ incentives) fully incentivized

generation ∇J(p∗) = λ∗ · 1−Hη∗.
The last statement follows from the KKT conditions of (12e),

in particular ν∗ = ω∗ = 0. Indeed, the planner’s problem (12e)
suggests another way of defining clearing prices based on dual
optimizers (λ∗, η∗, ν∗), given by λ∗ · 1−Hη∗ − ν∗, such that
they are incentive compatible with the economic dispatch q∗

∇J(q∗) = λ∗ · 1−Hη∗ − ν∗. (13)

This means of pricing essentially boils down to the canonical
LMPs λ∗ · 1−Hη∗ with ν∗ = 0.

Central to our developments will be the Lagrangian for the
convex planner’s problem (12e), i.e.,

L(p, q, ω, θ̃, α, λ, η, ν)

:= 1TJ(p)︸ ︷︷ ︸
generators

+
1

2
ωTDω+νT

(
q−d−Dω−CBθ̃

)
︸ ︷︷ ︸

network

+ αT (q−p)︸ ︷︷ ︸
generators or market

− λ · 1T (q−d)+ηT (HT (q−d)−F )︸ ︷︷ ︸
market

(14)

Fig. 1. Interactive structure. Only time varying exchanged information
is depicted.

which we refer to as the planner’s Lagrangian, with the po-
tential responsible party for each term. It is easy to see that
(14) is convex in the primal variables (p, q, ω, θ̃) and concave
(linear) in the dual variables (α, λ, η, ν). The KKT conditions
establish a bijective mapping between a min–max saddle point
(p∗, q∗, ω∗, θ̃∗, α∗, λ∗, η∗ ≥ 0, ν∗) of the planner’s Lagrangian
(14) and an optimal primal–dual solution to the planner’s prob-
lem (12e). We further refer to a function as a reduced planner’s
Lagrangian, if it is the optimum of the planner’s Lagrangian (14)
over a subset of the primal and dual variables.

B. Real-Time Interactive Structure

In practice, the planner’s problem (12) is not implementable
due to the lack of knowledge of generators’ cost functions. This
poses significant challenges for the grid planner to realize eco-
nomic dispatch in an incentive-compatible manner. To overcome
this obstacle, we propose to use the real-time interaction among
the grid, market, and participants to automatically achieve all
the economic and frequency control goals. We thus consider a
continuous-time setting and investigate two classes of dynamic
bidding mechanisms, based on quantity and price, that allow
each generator to determine its own bid while simultaneously
allowing the market to update its prices and dispatch.

We propose a unified framework for the grid–market–
participant loop, with a schematic layout of the interactive
structure shown in Fig. 1. The power network shares real-time
bus frequencies (ω) and (given) inelastic demand (d) with the
market. The market determines the signals of clearing prices
(π) and generation dispatch (q) based on the network conditions
and generators’ bids. The bids can take the form of a quantity
(p), suggesting the desired output of a generator, or a price (α),
indicating the desired unit price of a generator for its output.
Each individual generator responds to the market signals by
implementing the prescribed dispatch3 and updating its own bid
to reflect its preference to the market. The dispatch immediately
implemented affects the power network dynamics and may
interfere with the frequency stability.

3In reality, generators follow their dispatch signals subject to turbine-governor
dynamics. It can be readily shown that taking into account such local dynamics
does not affect the following closed-loop stability and equilibrium results [6],
[7], [9], but significantly adds to difficulties in presenting the analysis. To focus
on the grid–market–participant interactions here, we thus only demonstrate this
point using more realistic simulation studies.
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Inspired by (13) from the planner’s problem (12e), we then
define transient clearing prices π in Fig. 1 to generalize the
canonical LMPs as follows.

Definition 1: Market clearing prices are defined as

π := λ · 1−Hη − ν. (15)

Intuitively, λ prices global network power imbalance, Hη
prices line congestion, and ν prices local bus power imbalance.
This dynamic version of LMPs can be interpreted as transient
shadow prices and are bus-dependent and time-varying, em-
bodying the sufficient control authority of the market to react to
the changing network operational conditions and participants’
bids.

The fundamental challenge for the coupled system in Fig. 1
to simultaneously realize the primary, secondary, and tertiary
control, with a particular guarantee for compatible participants’
incentives, now boils down to two problems. First, How to char-
acterize individual bidding behavior? Second, How to design
market control laws of pricing and dispatch? We aim to identify
their underlying connections and address them systematically.

C. Rational Bidding of Individual Generators

We provide a principled approach to the first problem by
capturing the incentives of individual participants, which are
assumed to be rational price takers. A rational generator j ∈ N
can be modeled to pursue an input–output optimization of a
bidding problem, parameterized by market dispatch qj and price
πj (input), which decides its bid for quantity pj or price αj

(output). Therefore, we formulate a general form of the bidding
problem for each generator j as

Individual generator bidding problem
Input: clearing price π and dispatch q; output: bid p, α

max
pj

Uj(pj ; qj , πj) (16a)

s.t. Gj(pj ; qj , πj) = 0 : αj (16b)

where Uj(·) and Gj(·) are, respectively, real-valued concave
and convex functions to represent the objective and constraint
of generator j.4 We use the dual variable αj , a proxy for the
marginal cost, as the price bid. We will provide more intuitions
later. Note that only one type of bid p or α will be present. We
adopt a gradient-based methodology to characterize the rational
bidding behavior of individual generators. To solve the bidding
problem (16), we define its Lagrangian Lj(pj , αj ; qj , πj) and
choose between

ṗj = γpj · ∇pj
Lj (respectively, α̇j = −γαj · ∇αj

Lj)

(17a)

pj = argmax
pj

Lj (respectively, αj = argmin
αj

Lj) (17b)

as the individual dynamic gradient play [25] or best response
for bidding. We will discuss next the explicit formulations of
the bidding problem (16) and the resulting bidding behavior,
and further develop the countermeasure of market control laws
to address the second problem.

4Equation (16b) only involves equality constraints in our work. However, it
can easily generalize to inequality constraints.

III. ALIGNED MARKET DYNAMICS

In this section, we develop a systematic design of market
dynamics that is able to accommodate a family of participants’
bidding behavior, referred to as aligned bidding. The design is
inspired by a formulation of a network problem based on the
swing dynamics (4) as well as its connection with the planner’s
Lagrangian (14). We will first characterize the general paradigm
of alignment, and then showcase two specific examples of such
market dynamics designs from existing literature.

A. Network Problem

We first formulate a network problem that implicitly embodies
the physical swing dynamics (4)

Network problem
Input: dispatch q; output: frequency ω

min
ω,θ̃

1

2
ωTDω (18a)

s.t. q − d−Dω − CBθ̃ = 0 : ν. (18b)

By defining its Lagrangian

Ln(ω, θ̃, ν) :=
1

2
ωTDω + νT (q − d−Dω − CBθ̃) (19)

we can express the swing dynamics (4) as

ω = argmin
ω
Ln (20a)

˙̃
θ = − Γθ̃∇θ̃Ln (20b)

ν̇ = Γν∇νLn (20c)

withΓθ̃ = B−1 and Γν =M−1. Note that (20a) enforces ω ≡ ν
even in transient, which allows us to useω ↔ ν interchangeably.
Therefore, the clearing prices π in (15) are equivalently π =
λ · 1−Hη − ω.

Note that the network problem (18) can be viewed as part
of the planner’s problem (12e). More formally, we define an
aligned relation between the network and the grid planner as
follows.

Definition 2: The power network dynamics (4) are aligned
with the grid planner’s goals in the sense that

∇uLn = ∇uL (21)

holds for the network variables u = ω, θ̃, ν.
The alignment (21) means that (20) can be equivalently

expressed in terms of the planner’s Lagrangian L in (14). It
further implies that the physical response of the power network
automatically implements a partial saddle flow (21) of L or its
possibly reduced variant. Similar interpretations are identified
in [6], [7], [8], [9], and [10]. Since the network chooses (20a)
for ω (reduction), we accordingly define a reduced planner’s
Lagrangian

L̄(p, q, θ̃, α, λ, η, ν) := min
ω

L(p, q, ω, θ̃, α, λ, η, ν). (22)

B. Aligned Bidding and Market Dynamics Design

We model the individual bidding behavior of generator j ∈
N by the dynamic gradient play or best response in (17) with
respect to the Lagrangian Lj of its bidding problem. In light
of the same gradient-based structure as (21), a particular family
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of participants’ behavior is identified to satisfy the following
notion of alignment.

Definition 3: Individual generators’ bidding behavior is
aligned with the grid planner’s goals if

∇uLj = ∇uL̃ (23)

holds for the bidding variables u = pj , αj , where L̃ is a possibly
reduced variant of L̄ in (22).

We will make the following assumption on L̃.
Assumption 1: L̃, as well as all other possibly reduced

variants of L̄, is finite in any bounded region of its domain.
Remark 1: With some particular reduction, L̃may always at-

tain infinity and is thus not well defined. Assumption 1 excludes
such L̃’s from consideration. Such circumstances are common,
especially when the planner’s LagrangianL is linear with respect
to the variables to be optimized. However, it is possible to
circumvent the issue by introducing an additional regularization
term of the form ‖x− x̂‖2, with x̂ being an auxiliary variable,
whenever optimizing L̄ over x alone leads to infinity [26], [27].
Therefore, we implicitly assume that all the reduced Lagrangians
discussed later are well defined.

This alignment between participants and the grid planner in
Definition 3 also connects the way each individual participant
bids (17) with a partial saddle flow of L̃ (or its possibly reduced
variant), in addition to (21) realized by the swing dynamics (4).
Note that the saddle points of the planner’s Lagrangian L in
(14), and thus also L̃, optimally solve the planner’s problem
(12e) and achieve all of its goals. This connection inspires a
design of aligned market dynamics that complements the saddle
flow through pricing and dispatch.

In general, with either dynamic bidding mechanism of quan-
tityp or priceα, the market seeks to solve an input–output variant
of the planner’s problem (12e), where some quantities, e.g., bids
and frequencies, are assumed as given (input), and prices and
dispatch are to be computed and released to participants (output).
We formulate such a problem in a generic form as follows:

Market problem5

Input: bid α, p and frequency ω; output: clearing price π and
dispatch q

min
q

Um(q; p, α, ω) (24a)

s.t. Gm(q; p, α, ω) ≤ 0 : (λ, η ≥ 0) (24b)

where Um(·) and Gm(·) are real-valued and vector-valued con-
vex functions that, respectively, represent the market objective
and constraints. Note that the general expression describing in-
equality constraints also captures equality constraints. We could
also develop gradient-based market control laws for pricing and
dispatch that can be interpreted as a primal–dual algorithm to
solve the market problem (24). In particular, we define for the
market problem (24) its Lagrangian Lm(q, λ, η; p, α, ω) and
likewise choose between

u̇ = −Γu∇uLm (respectively, u̇ = Γu [∇uLm]+η ) (25a)

u = argmin
u
Lm (respectively, u = arg max

u:η≥0
Lm)

(25b)

5Since only one of α and p will serve as bids and the input for the market
problem, as we will see later, α may be included in the market variables in the
quantity bidding case. However, it will not affect the market output.

for any primal variable u = q (respectively, dual variables u =
λ, η) to solve for the optimal value. The projection [·]+η applies
only to u = η, which guarantees that the trajectory of η(t)
starting from an arbitrary nonnegative point remains nonneg-
ative. Given the alignment of both the power network (21) and
participants (23), the key design is to exploit L̃ and the choice
of participants’ bidding update (dynamic gradient play or best
response) in (17), and extract the corresponding market problem
(24) from the planner’s problem (12e). In particular, suppose L̃
is the optimum of L̄ over a subset of variables vm, i.e., L̃ = L̄|v∗

m

with v∗m being the optimizer, and a subset N̄ ⊂ N of generators
use (17b) to bid vN̄ —also a subset of variables of L̄. We propose
to design the market such that the following holds.

1) For the market variables u = q, λ, η

∇uLm = ∇uL̄|v∗̄
N

(26)

holds (thus also aligned), where v∗̄N is the optimizer;

2) Equation (25b) is chosen for vm to yield L̃ in (23).
Based on the bidding mechanism, we can always apply opti-

mization decomposition to the planner’s problem (12e) to obtain
the desired market problem (24) (see examples in Section II-
I-C). By this means, the market control laws (25) are basically
designed to complement the saddle flow of a particular reduced
planner’s Lagrangian that accounts for all the reduced parts,
given by

L̂ := L̄|v∗
m,v∗̄

N
. (27)

Such aligned market dynamics render the joint dynamics of
the grid, market, and participants a (projected) saddle flow of L̂.
Thus, the grid–market–participant loop can be expressed as[

T z

T σ

] [
ż

σ̇

]
=

⎡
⎣ −∇zL̂(z, σ)[

∇σL̂(z, σ)
]+
η

⎤
⎦ (28)

where z and σ are, respectively, the subsets of the primal
variables (p, q, θ̃) and the dual variables (α, λ, η, ν), which are
updated using the gradient information via (17a), (20b), (20c),
and (25a). We slightly abuse the notation such that the projection
[·]+η only applies to part of the gradient corresponding to η in σ.
The remaining variables are updated based on (17b), (20a), and
(25b).

To gain insights into this closed-loop interaction (28), we
next show that its equilibria correspond to optimal solutions to
the planner’s problem (12e). We further show that it converges
asymptotically to one such equilibrium point under mild condi-
tions. If η is contained in σ, define

I :=

{
(z, σ) | η ∈ R2|E|

≥0

}
(29)

as the set of initial points in order to guarantee a nonneg-
ative trajectory for η; otherwise, define I := R|z|+|σ|. Then,
the equilibria of the grid–market–participant loop (28) can be
characterized by the following theorem (proof in Appendix A).

Theorem 2: Let Assumption 1 hold. For the grid–market–
participant loop (28), a point (z∗, σ∗) ∈ I is an equilibrium if and
only if (z∗, σ∗) corresponds to an optimal primal–dual solution
to the planner’s problem (12).

Theorem 2 indicates that each equilibrium point not only
restores the nominal frequency, but also achieves underlying

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on October 01,2025 at 05:24:45 UTC from IEEE Xplore.  Restrictions apply. 



YOU et al.: ON THE STABILITY, ECONOMIC EFFICIENCY, AND INCENTIVE COMPATIBILITY OF ELECTRICITY MARKET DYNAMICS 6821

economic dispatch—demand met in an economically efficient
manner and line thermal limits respected—while fulfilling com-
patible participants’ incentives through individual bidding.

We proceed to show the convergence of the closed-loop
system (28) to one equilibrium point. Given the initial condition
of I, define

E := {(z, σ) | ż = 0, σ̇ = 0} (30)

as the set of its equilibrium points. We make the following as-
sumption on the system observability that leads to the asymptotic
stability of the equilibrium set described in Theorem 3 (proof in
Appendix B).

Assumption 2 (Observability): The grid–market–participant
loop (28) has an observable output L̂(z, σ) such that for any of
its trajectories (z(t), σ(t)) that satisfies L̂(z∗, σ(t)) ≡ L̂(z∗, σ∗)
and L̂(z(t), σ∗) ≡ L̂(z∗, σ∗), we have ż ≡ 0 and σ̇ ≡ 0.

Theorem 3: If Assumptions 1 and 2 hold, then the equilibrium
set E is globally asymptotically stable on I. In particular, starting
from any initial point in I, a trajectory (z(t), σ(t)) of the grid–
market–participant loop (28) remains bounded for t ≥ 0 and
converges to (z∗, σ∗)with t→ ∞, where (z∗, σ∗) is one specific
equilibrium point in E.

Assumption 2 is a weaker version of the classical observ-
ability notion that exploits the saddle-point properties of the
planner’s Lagrangian (14) [27]. It essentially entails particular
structures for L̂(z, σ), or the planner’s problem (12). Note
that L̂(z(t), σ(t)) ≡ L̂(z∗, σ∗) ⇒ (z(t), σ(t)) ≡ (z∗, σ∗) does
not suffice for an observable output in this case. Theorem 3
implies that, under mild conditions, the aligned participants’
bidding behavior together with the proposed market dynamics
can essentially function as a feedback controller on the power
network dynamics to simultaneously realize the cross-timescale
primary, secondary, and tertiary control with compatible par-
ticipants’ incentives. Note that similar to nominal frequency
restoration, economic efficiency with congestion management
and incentive compatibility are both steady-state requirements.
They are achieved at any equilibrium point (z∗, σ∗) of the
grid–market–participant loop (28), as suggested by Theorem 2.
Indeed, this notion of alignment establishes connections to the
rationale of saddle flow dynamics [26], [27], [28] that underlies
such principled grid–market–participant loop (28). As a result,
the rate of convergence could also be analyzed—see an example
in [29], although it is not pursued here.

C. Illustrative Examples

We next present two examples of aligned market dynamics,
based on the two common bidding mechanisms of quantity
and price, respectively. The two examples take root in existing
literature [1], [21], [22]. For illustration purposes, we follow
a uniform choice of bidding behavior [either (17a) or (17b)
for all participants] as in [1] and [21]. We note, however, the
results presented in this article can accommodate mixed choices,
thus generalizing previous works. We also show through the
examples that the observability condition in Assumption 2 is
readily satisfied for the grid–market–participant loop (28).

1) Quantity Bidding: The quantity bidding mechanism al-
lows individual generator participants to bid their own decisions
on the amount of electricity generation p into the market. All the
received quantity bids p are respected and taken as the generation
dispatch q. However, the market aims to match the supply with

given demand and meet the network operational constraints by
setting appropriate clearing prices π to coordinate these quantity
bids.

Since the dispatch qj of generator j follows its quantity bid
pj , it is able to maximize its profit from the market, given the
clearing price πj at bus j ∈ N , by solving its bidding problem

Uj(pj ;πj) := πjpj − Jj(pj) (31a)

Gj(pj ;πj) = 0 : ∅. (31b)

The unconstrained problem (31)6 immediately suggests

Lj(pj ;πj) := πjpj − Jj(pj) (32)

and the dynamic gradient play of (17a) on pj gives the bidding
strategy of generator j [1], [21]

τpj ṗj = πj −∇Jj(pj) j ∈ N . (33)

Note that (33) reveals a direct economic interpretation that
generator j tends to augment productionpj if the offered clearing
price πj exceeds its marginal cost ∇Jj(pj); otherwise, it will
curtail production pj . It is therefore incentivized to adapt its
production pj in a way that matches its marginal cost ∇Jj(pj)
with the clearing price πj , which will bring it the maximum
profit. Equation (33) represents exactly the rational quantity
bidding behavior of a price-taking generator.

Further, (33) satisfies the alignment condition in Definition 3
based on the following reduced planner’s Lagrangian:

L̃(p, θ̃, λ, η, ν) := min
q

max
α

L̄(p, q, θ̃, α, λ, η, ν) (34)

which leads to q ≡ p even in transient, i.e., dispatch follows
quantity bids, exactly as the bidding mechanism mandates.

Given (33) and (34), in this case, vm contains q and α, while
vN̄ is∅. Based on (26), we aim forLm such that∇uLm = ∇uL̄
holds for u = q, λ, η. Note that now the market enforces q = p.
Then, by inheriting all the market-related terms (independent of
ω) from the planner’s Lagrangian (14), we obtain Lm as

Lm(q, α, λ, η; p) := αT (q − p)− λ · 1T (q − d)

+ ηT
(
HT (q − d)− F

)
. (35)

Note that here α is a market dual variable. Equation (35)
implies the explicit market problem formulation (24) as

Um(q; p) := 0 (36a)

Gm(q; p) ≤ 0 : (12b)−(12d). (36b)

The market problem (36) is a feasibility problem that coordi-
nates quantity bids of individual generation scheduling through
pricing (π = λ · 1−Hη − ω). We need to further select (25a)
for (λ, η) and (25b) for (q, α) [to yield L̃ in (34)]. The resulting
formal aligned market dynamics are

q ≡ p (37a)

T λλ̇ = −1T (q − d) (37b)

T η η̇ =
[
HT (q − d)− F

]+
η
. (37c)

Under the quantity bidding mechanism, the grid–market–
participant loop, consisting of (4), (33), and (37), equivalently

6We use the empty set symbol ∅ to refer to the lack of constraints.
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implements the projected saddle flow (28) of the underlying
reduced planner’s Lagrangian L̂ = L̃ in (34) that optimizes L̄
over (vm, vN̄ ), i.e.,

L̂(z, σ) := min
q

max
α

L̄(p, q, θ̃, α, λ, η, ν) (38)

with z := (p, θ̃) ∈ R|N |+|E| and σ := (λ, η, ν) ∈ R|N |+2|E|+1.
In this setting, the observability in Assumption 2 indeed holds
as claimed below (proof in Appendix C).

Proposition 1: Given L̂(z, σ) in (38), if any trajectory
(z(t), σ(t)) of the grid–market–participant loop (28) satisfies
L̂(z∗, σ(t)) ≡ L̂(z∗, σ∗) and L̂(z(t), σ∗) ≡ L̂(z∗, σ∗), then ż ≡
0 and σ̇ ≡ 0 hold.

2) Price Bidding: The price bidding mechanism allows in-
dividual generator participants to bid into the market the desired
prices α of electricity at which they are willing to sell. Such a
price bid is expected to implicitly reflect the marginal generation
cost without revealing a generator’s truthful cost function. The
market targets an economic schedule of generation dispatch q
with the corresponding incentive compatible clearing prices π
based on these price bids.

Given the market dispatch qj and clearing price πj at bus
j ∈ N , generator j is obliged to follow the designated generation
dispatch but still can strive for profit maximization through its
price bid:

Uj(pj ; qj , πj) := πjqj − Jj(pj) (39a)

Gj(pj ; qj , πj) = 0 : (12b). (39b)

We interpret the price bid from the dual perspective and define
a corresponding Lagrangian Lj

Lj(pj , αj ; qj , πj) := πjqj − Jj(pj) + αj(pj − qj). (40)

We adopt (17a) for α and (17b) for p to characterize the
bidding strategy of generator j [22]

ταj α̇j = qj − (∇Jj)−1(αj) j ∈ N (41)

where we have substituted pj = (∇Jj)−1(αj) from (17b) for p.
The rational bidding behavior (41) reveals generator j’s effort
to align its desired generation (∇Jj)−1(αj), conveyed through
the price bid αj , with the given dispatch qj . For example, an
increase in αj implies raised desired generation (∇Jj)−1(αj)
(by convexity), and meanwhile signals the market to decrease the
corresponding dispatch qj , thus diminishing the gap in between.
It can be readily verified that (41) also satisfies Definition 3
of alignment with L̃ = L̄ in (22). Therefore, vm is ∅, while
we have vN̄ = p, from (41). Based on (26), we aim for Lm

such that ∇uLm = ∇u minp L̄ holds for u = q, λ, η. Note that
now p = q is accounted for by individual generators in (39b).
Then, inheriting all the market-related terms (independent of p)
from the planner’s Lagrangian (14), including νT q and αT q that
capture interactions, leads to

Lm(q, λ, η;α, ω) := (α+ ω)T q − λ · 1T (q − d)

+ ηT
(
HT (q − d)− F

)
(42)

with interchangeable ω ↔ ν. It corresponds to the desired mar-
ket problem as

Um(q;α, ω) := (α+ ω)T q (43a)

Gm(q;α, ω) ≤ 0 : (12c)−(12d). (43b)

The market problem (43) uses the price bids and the fre-
quencies, α+ ω, as a proxy for the unit generation costs,
and minimizes the corresponding aggregate generation cost—a
frequency-aware variant of economic dispatch.7 Since vm is ∅,
we will just implement (25a) for (q, λ, η), leading to the formal
aligned market dynamics:

T q q̇ = λ · 1−Hη − ω − α (44a)

T λλ̇ = −1T (q − d) (44b)

T η η̇ =
[
HT (q − d)− F

]+
η
. (44c)

Under the price bidding mechanism, the grid–market–
participant loop, consisting of (4), (41), and (44), equivalently
implements the projected saddle flow (28) of the underlying
reduced planner’s Lagrangian

L̂(z, σ) := min
p

L̄(p, q, θ̃, α, λ, η, ν) (45)

based on (27), with z := (q, θ̃) ∈ R|N |+|E| and σ := (α, λ,
η, ν) ∈ R2|N |+2|E|+1. Here, p ≡ (∇J)−1(α) is enforced with
the column vector-valued inverse function (∇J)−1(α) :=
((∇Jj)−1(αj), j ∈ N ) representing the elementwise inverse of
gradients. The observability in Assumption 2 likewise holds here
as formally stated below (proof analogous to that of Proposi-
tion 1).

Proposition 2: Given L̂(z, σ) in (45), if any trajectory
(z(t), σ(t)) of the grid–market–participant loop (28) satisfies
L̂(z∗, σ(t)) ≡ L̂(z∗, σ∗) and L̂(z(t), σ∗) ≡ L̂(z∗, σ∗), then ż ≡
0 and σ̇ ≡ 0 hold.

IV. MISALIGNED MARKET DYNAMICS

In general, individual participants are not obliged to conform
with any behavior pattern aligned with the market. If they do
not bid in an aligned manner, the role of market dynamics has
to be reevaluated. In this section, we propose an exemplar of
rational price bidding strategy for price-taking participants that
is misaligned. To maintain the desirable properties of the market
dynamics, a modification on the market control laws is necessary
to accommodate the misalignment.

A. Misaligned Price Bidding

We still consider the dynamic price bidding mechanism where
each generator j interacts with the market through its price bid
αj . From a generator’s perspective, given the market dispatch
qj and clearing price πj , one alternative to fully exploit the
market information is to check whether the pair (qj , πj) satisfies
incentive compatibility, i.e., whether its marginal generation cost
matches the clearing price, ∇Jj(qj) = πj . Note that

(∇Jj)−1(πj) = argmax
pj

πjpj − Jj(pj) (46)

is indeed the individual desired generation that maximizes gen-
erator j’s profit given the clearing price πj . If it is matched
by the market dispatch qj , the generator should be satisfied
with its current clearing price and dispatch. Otherwise, any
discrepancy between the individual desired generation and the

7The linear programming formulation (43) may not be well defined (finite
optimum) in general without generation capacity constraints. However, it is
sufficient to derive control laws that make the closed loop steady-state optimal.
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market dispatch would drive generator j to strive for compatible
incentives.

This idea inspires a new formulation of the individual price
bidding problem

Uj(pj ; qj , πj) := 0 (47a)

Gj(pj ; qj , πj) = 0t :

{
(12b)
pj = (∇Jj)−1(πj)

(47b)

where (47b) still enforces the market dispatch qj to be strictly
followed while generator j requires it to be incentive compatible
with the clearing price πj . This is a feasibility problem and we
still interpret the price bidding from the dual perspective. We
define Lj to be a partial Lagrangian of (47) that only relaxes
(12b)

Lj(αj ; qj , πj) := αj

(
(∇Jj)−1(πj)− qj

)
(48)

where we have plugged in pj = (∇Jj)−1(πj) to indicate the
individual desired generation. The dynamic gradient play (17a)
on α defines an alternative price bidding strategy for generator
j

ταj α̇j = qj − (∇Jj)−1(πj) j ∈ N . (49)

Compared with the previous aligned bidding behavior (41),
the clearing price information is exploited here instead of each
local bid. To some extent, the current strategy (49) is even
more straightforward and compelling for rational individual
generators since it directly reflects their economic incentives.
For instance, if a generator is dispatched more than its desired
generation, it raises its price bid to indicate more costly pro-
duction in anticipation of a reduced dispatch or a lifted clearing
price, at which it is willing to produce more. The price bid αj

will remain fixed only when the pair of the market dispatch
qj and clearing price πj satisfies ∇Jj(qj) = πj to be incentive
compatible. Note that a generator bidding according to (49) is
still a price-taker since it just responds to the given dispatch and
clearing price.

Suppose the market still maintains the market control laws
(44), attained from the market problem (43) under the price
bidding mechanism. The alignment condition does not hold here
since there does not exist any reduced planner’s Lagrangian that
satisfies Definition 3. In fact, the insertion of p = (∇J)−1(π)
into the planner’s Lagrangian (14) could deprive it of the con-
cavity in the dual variables (α, λ, η, ν). The next illustrative
example further suggests that such misalignment can lead to
system instability.

Single-bus example: We adopt a quadratic form for Jj(·)

Jj(qj) :=
cj
2
q2j + c̄jqj (50)

which is parameterized by constants cj > 0 and c̄j . Consider
the following illustrative single-bus example. Ignoring the states
θ̃ and η (no network), dropping subscripts, and setting M =
D = Tα = T q = T λ = c = c̄ = 1give the following dynamics:⎡

⎢⎢⎣
ω̇

α̇

q̇

λ̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
−1 0 1 0

1 0 1 −1

−1 −1 0 1

0 0 −1 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
=:A

⎡
⎢⎢⎣
ω

α

q

λ

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
−d
1

0

d

⎤
⎥⎥⎦

︸ ︷︷ ︸
constant

. (51)

Fig. 2. Simulation run of illustrative example (51).

It can be checked that the matrix A has a pair of complex-
conjugate eigenvalues 0.16± i1.75 with positive real parts.
Thus, the system (51) is not stable, as also illustrated in Fig. 2.

The example indicates that individual participants being ratio-
nal price-takers is not sufficient to guarantee alignment between
participants and the grid planner. Further, such misalignment
can render the design of saddle-based market dynamics (44)
closed-loop unstable. The source of the misalignment in this
case can be understood as having participants’ bidding dynamics
based on saddle flows of different reduced Lagrangians.

More precisely, for the closed-loop system (4), (44), and (49),
one can identify that individual participants choose the desired
generation p‡ from the following reduced planner’s Lagrangian:

p‡ := argmin
p

{
max
α

min
q

L̄(p, q, θ̃, α, λ, η, ν)

}
= (∇J)−1(λ · 1−Hη − ν). (52)

However, all the remaining variables (z := (q, θ̃) ∈ R|N |+|E|

andσ := (α, λ, η, ν) ∈ R2|N |+2|E|+1) are updated using a saddle
flow based on L̄ in (22) yet with p = p‡

T z ż = −∇zL̄(p, q, θ̃, α, λ, η, ν)
∣∣∣
p=p‡

T σσ̇ =

[
∇σL̄(p, q, θ̃, α, λ, η, ν)

∣∣∣
p=p‡

]+
η

(53)

This variant of saddle flow dynamics (53) matches exactly the
current closed-loop system (4), (44), and (49). However, it is
not exactly a saddle flow because p‡ is not the minimizer of p
with respect to L̄ and, as a result, it does not correspond to any
reduced planner’s Lagrangian. Obviously, participants’ bidding
behavior is not aligned according to Definition 3.

B. Market Modification

In this section, we propose a solution that modifies the market
control laws (44) to accommodate such misaligned bidding
behavior (49). To simplify the analysis and presentation, we
still use the quadratic generation cost in (50). However, note that
the idea of market modification is not limited to this particular
case. We introduce an auxiliary primal variable q̂ ∈ R|N | and
reformulate the market problem with an extra regularization term
in the objective function to minimize

Um(q, q̂;α, ω) := (α+ ω)T q +
ρ

2

∥∥q − q̂
∥∥2 (54a)

Gm(q, q̂;α, ω) ≤ 0 : (12c)−(12d) (54b)
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where ρ > 0 is a constant regularization coefficient. Due to the
positive regularization, the minimum of (54) is lower bounded
by that of (43) and the bound is tight only when q∗ = q̂∗ holds.
Therefore, (q∗, q̂∗ = q∗, λ∗, η∗) is optimal w.r.t. (54) if and only
if (q∗, λ∗, η∗) is optimal w.r.t. (43). In this sense, we refer to q̂
as virtual dispatch since it is consistent with real dispatch q at
optimality.

We still follow the general idea of gradient-based market
control laws to define the Lagrangian Lm of (54):

Lm(q, q̂, λ, η;α, ω) := (α+ ω)T q +
ρ

2

∥∥q − q̂
∥∥2

−λ · 1T (q−d)+ηT (HT (q − d)−F )
(55)

and select (25a) for (q̂, λ, η) and (25b) for q, which yields the
modified market dynamics

q ≡ 1

ρ
(λ · 1−Hη − ω − α) + q̂ (56a)

T q̂ ˙̂q = λ · 1−Hη − ω − α (56b)

T λλ̇ = −1T

(
1

ρ
(λ · 1−Hη − ω − α) + q̂ − d

)
(56c)

T η η̇ =

[
HT

(
1

ρ
(λ · 1−Hη − ω − α) + q̂ − d

)
− F

]+
η

.

(56d)

The virtual dispatch q̂ is internal to the market, whereas the
real dispatch q is released to individual participants for imple-
mentation along with the clearing prices π = λ · 1−Hη − ω.

C. Equilibrium Analysis and Asymptotic Stability

In this section, we examine the interaction among the phys-
ical power network dynamics (4), the modified market control
laws (56), and the rational bidding behavior (49) of individual
participants. We will formally characterize the steady state and
stability of this new closed-loop system.

We first define z := (q̂, θ̃) ∈ R|N |+|E| and σ := (α, λ, η, ω) ∈
R2|N |+2|E|+1, and note that q in (56a) is the reduced variable. We
retain the sets of initial points and equilibrium points defined in
(29) and (30), respectively. The corresponding equilibrium set
is then explicitly characterized as follows (proof analogous to
that of Theorem 2).

Theorem 4: For the grid–market–participant loop (4), (49),
and (56), a point (z∗, σ∗) ∈ I is an equilibrium if and only if
(z∗, σ∗) corresponds to an optimal primal–dual solution to the
planner’s problem (12).

Having secured the desirable steady state, we next show that
given the initial condition of I, the grid–market–participant loop
(4), (49), and (56) indeed converges to one equilibrium point in
E with proper choice of the coefficient ρ, as summarized below
(proof in Appendix D).

Theorem 5: The equilibrium set E is globally asymptotically
stable on I, given ρ ∈ (0, infj∈N 4cj). In particular, starting
from any initial point in I, a trajectory (z(t), σ(t)) of the grid–
market–participant loop (4), (49), and (56) remains bounded for
t ≥ 0 and converges to (z∗, σ∗) with t→ ∞, where (z∗, σ∗) is
one specific equilibrium point in E.

Remark 2: Recall cj > 0, j ∈ N , is the given quadratic
coefficient in each generation cost function (50). Therefore, we
can always pick a sufficiently small ρ that satisfies the condition
such that the grid–market–participant loop (4), (49), and (56)
asymptotically converges to a target equilibrium point.

Theorem 5 suggests that the proposed market modification
with regularization (54) is able to accommodate the misalign-
ment from the way each participant bids (49), such that the
modified market dynamics and the misaligned individual bid-
ding behavior can still function as a feedback controller on the
power network dynamics to realize all the primary, secondary,
and tertiary control with compatible participants’ incentives.
The required modification, however, highlights the necessity of
robust market control laws that can better accommodate diverse
participants’ behavior and potential misalignment.

D. Underlying Rationale: Implicit Regularization

In this section, we provide more intuitions about the mod-
ified market dynamics design (56). We first point out that the
minimizer of the real dispatch q in (56a) is equivalent to the
proximal operator (as a function of q̂) associated with the orig-
inal Lm (in the variable q) in (42), and is commonly used in
dealing with nondifferentiable optimization problems [28]. In
light of the linear programming formulation of the original mar-
ket problem (43), we can expect this proximal gradient-based
market control laws (56) to secure convergence under milder
conditions from an optimization perspective. We note, however,
from a design perspective, the proposed market modification
does not recover alignment to connect with standard saddle
flows. Indeed, the current grid–market–participant loop (4), (49),
and (56) still corresponds to the following improper form, yet
with the Moreau–Yosida regularization on the original reduced
Lagrangian L̄

T z ż = −∇z

{
min
q
L̄(p, q, θ̃, α, λ, η, ν) +

ρ

2
‖q − q̂‖2

} ∣∣∣
p=p‡

T σσ̇=

[
∇σ

{
min
q
L̄(p, q, θ̃, α, λ, η, ν) +

ρ

2
‖q − q̂‖2

} ∣∣∣
p=p‡

]+
η

(57)

with z : = (q̂, θ̃) ∈ R|N |+|E| and σ := (α, λ, η, ν) ∈
R2|N |+2|E|+1 here. It is worth to highlight that the only
difference between L̄ in (53) and the Moreau envelope of L̄ in
(57) (q̂ in place of q) is an extra implicit regularization term

− 1

2ρ
‖λ · 1−Hη − ν − α‖2. (58)

Note that essentially the misaligned price bidding behavior
(49) deviates from the aligned one (41) by using the clearing
price information π = λ · 1−Hη − ω instead of the local bids
α. Thus, one can understand the role of the regularization term
(58) as penalizing the mismatch between the clearing prices
π and the local bids α. The smaller the ρ is, the stronger this
regularization impact will be and the closer the clearing prices
π and the local bids α will be tied to each other. Theorem 5
provides a threshold for ρ under which the two quantities are
close enough such that the misalignment can be accommodated
despite the use of the clearing price information.
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TABLE I
PROPERTY COMPARISON ACROSS DIFFERENT MARKET DYNAMICS

Fig. 3. Comparison across different market dynamics in response to instant power imbalance: selected trajectories of frequency variables at
generator buses 30–39 for (a) and line flow variables on lines 4, 19, and 26 for (b). (a) Frequency deviation. (b) Line flows (thermal limits indicated
by dashed lines).

V. NUMERICAL RESULTS

We test the proposed aligned market dynamics based on
quantity and price bidding, as well as the modified market dy-
namics for misaligned price bidding on the IEEE 39-bus system
to illustrate their interplay with grid dynamics and respective
participants’ behavior. Despite basing our analysis on a linear
approximation of the physical swing dynamics, we adopt a high-
fidelity model for the numerical tests, including nonlinear power
flows, voltage dynamics, and first-order turbine dynamics. All
of the ten generators, located at buses 30–39, are taken as market
participants and can serve as prosumers by deviating from their
nominal operating points. We randomly select three lines 4,
19, and 26, and endow them with relatively small transmission
capacity ±3 per unit (p.u.) such that the line thermal limits
will be potentially binding. One p.u. (100 MW) of step load
increase is imposed at bus 30 at time 0. The 200-s simulation
runs of transient dynamics in response to this instant power
imbalance for grid–market–participant loops will be presented,
with selected trajectories of the frequency variables at generator
buses 30–39 and the line flow variables on lines 4, 19, and 26.

Comparison Across Market Dynamics: We compare the three
main market dynamics (37), (44), and (56) discussed in this
article, along with three relevant benchmarks from the litera-
ture [20], [21], [22], [23]. In particular, we will refer to the bench-
marks as follows: quantity bidding benchmark I—[20], quantity

bidding benchmark II—[21], and price bidding benchmark—
[22] and [23]. Table I summarizes several key properties of
market dynamics designs.8 It is apparent that the three market
dynamics (37), (44), and (56) are designed in a more systematic
manner that accounts for most, if not all, of these properties. As
we can further observe from Fig. 3, all the three market dynamics
(37), (44), and (56) are able to drive the respective systems to
steady states within 200 s. At equilibrium, they all restore the
frequency back to its nominal value, respect the line thermal
limits, and achieve the optimal generation dispatch. However,
the quantity bidding benchmark I fails to eliminate the frequency
deviation. While the quantity bidding benchmark II and the price
bidding benchmark restore the nominal frequency, congestion
cannot be managed in both cases and there are steady-state line
flows exceeding the thermal limits.

Performance of Market Modification: Fig. 4 shows a represen-
tative profile of frequency deviation at bus 37 with the modified
market dynamics for misaligned price bidding, as we vary the
regularization coefficient ρ subject to Theorem 5. The role of
the regularization term (58) is enhanced with a smaller ρ, e.g.,
0.1, which however amplifies oscillations in transient. On the

8Alignment refers to the Lagrangian-based design of market control laws.
Interoperability refers to the possibility of coexistence of dynamic gradient play
(17a) and best response (17b) for individual bidding. Economic Rationality
refers to the incentive-based bidding strategies (17).
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Fig. 4. Modified market dynamics for misaligned price bidding: Impact
of ρ on frequency deviation at bus 37.

contrary, a larger ρ, e.g., 1 or 10, damps oscillations and leads
to smoother convergence.

VI. CONCLUSION

This article studies the interaction among grid dynamics,
market dynamics, and bidding dynamics of individual market
participants. We first develop a principled framework for the
design and analysis of aligned market dynamics, conditioned
on a family of alignment characterization for individual bidding
behavior. The alignment connects the associated grid–market–
participant loop to a saddle flow whose min–max saddle points,
i.e., equilibrium points, optimally solve the target planner’s
problem to realize the primary, secondary, and tertiary frequency
control with compatible participants’ incentives. We show that
the framework is general for the bidding mechanisms based on
quantity and price, and, under mild conditions, the asymptotic
convergence of the closed-loop system to an equilibrium can be
guaranteed. Two specific examples of aligned market dynamics
are demonstrated. We further study an exemplar of misaligned
bidding behavior that can lead to system instability in the ab-
sence of the alignment property. A solution of modified market
control laws is proposed to accommodate such misalignment,
highlighting the necessity of market robustness against diverse
individual bidding behavior. Numerical simulations on the IEEE
39-bus system validate our market dynamics designs in terms of
global asymptotic stability and steady-state performance.

Limitations: There are several potential extensions that could
help relax technical assumptions and make the results more gen-
eral and robust. For example, general convex instead of quadratic
costs may be necessary for the misaligned price bidding case.
Further, local stability could be established in cases where
convex costs do no hold. Practical factors, e.g., communication
delay and state estimation error, are also important and will be
left for future studies.

APPENDIX A
PROOF OF THEOREM 2

Define φ := (p, q, ω, θ̃, α, λ, η, ν)\(z, σ) to be the variables
that are reduced and updated by taking their optimizers based
on (17b), (20a), and (25b). Note that an optimal primal–dual
solution to the planner’s problem (12e) is characterized by the
KKT conditions that include stationarity, primal feasibility, dual
feasibility, and complementary slackness (assuming that certain
regularity conditions hold).

Necessary condition: We first ignore the particular projection
to guarantee η ≥ 0. An equilibrium (z∗, σ∗) of the grid–market–
participant loop (28) means

∇zL̂(z
∗, σ∗) = 0 (59a)

∇σL̂(z
∗, σ∗) = 0 (59b)

with L̂(z∗, σ∗) = L(z∗, σ∗, φ(z∗, σ∗)), where φ(z, σ) contains
the corresponding optimizers of L(z, σ, φ), always satisfying

∇φL(z
∗, σ∗, φ(z∗, σ∗)) = 0 (59c)

due to the finiteness of L̂ by Assumption 1.9

Let φ∗ := φ(z∗, σ∗) be the short hand. Note that (59a) and
(59b) imply

∇zL̂(z
∗, σ∗) =

(
∇zL+

∂φ

∂z

T

∇φL

) ∣∣∣∣∣
(z∗,σ∗,φ∗)

= 0 (60a)

∇σL̂(z
∗, σ∗) =

(
∇σL+

∂φ

∂σ

T

∇φL

) ∣∣∣∣∣
(z∗,σ∗,φ∗)

= 0 (60b)

where ∂φ
∂z and ∂φ

∂σ constitute the Jacobian matrix of φ(z, σ).
Equations (59c) and (60) jointly lead to

∇zL(z
∗, σ∗, φ∗) = 0 and∇σL(z

∗, σ∗, φ∗) = 0. (61)

Indeed, (59c) and (61) equate with all the stationarity condi-
tions and equality feasibility conditions in the KKT conditions.

We next consider the effect of the projection for η ≥ 0. If η
is contained in σ, then we have[

∇ηL̂(z
∗, σ∗)

]+
η
=
[
HT (q∗ − d)− F

]+
η
= 0 (62)

which suggests for any eth elements of these vectors either
(HT (q∗ − d))e = Fe with η∗e ≥ 0 or (HT (q∗ − d))e < Fe with
η∗e = 0. In either case, the inequality feasibility conditions [(12d)
and η ≥ 0] and the complementary slackness condition are
simultaneously guaranteed.

If η is contained in φ, then it follows from (25b) and Assump-
tion 1 that:

∇ηL(z
∗, σ∗, φ∗) ≤ 0 and diag(η∗)∇ηL(z

∗, σ∗, φ∗) = 0 (63)

should hold to guarantee the finiteness of L̂ in the presence of
η ≥ 0. Therefore, the inequality feasibility conditions and the
complementary slackness condition are also met.

All in all, the KKT conditions are satisfied and (z∗, σ∗, φ∗) is
an optimal solution to the planner’s problem (12).

Sufficient condition: Given an optimal solution (z∗, σ∗, φ∗)
to the planner’s problem (12) that satisfies the KKT conditions,
if η is contained in σ, then all the stationarity conditions and
equality feasibility conditions basically equate with (59c) and
(61), and thus (59a) and (59b), for all the variables except
η. Further, the inequality feasibility condition (12d) suggests
∇ηL̂(z

∗, σ∗) = 0 immediately if it attains equality; otherwise,

9As discussed in Remark 1, the potential regularization technique guarantees
the uniqueness and Lipschitz continuity of φ(z, σ), and thus also the existence
of its Jacobian matrix in our problem.
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the complementary slackness condition mandates η∗ = 0, which
projects the negative∇ηL̂(z

∗, σ∗) to zero through the projection
[·]+η . Therefore, (z∗, σ∗) is an equilibrium point of (28).

If η is contained in φ, indeed the optimality condition of (25b)
suggests that

diag(η)∇ηL(z, σ, φ) = diag(η)
(
HT (q − d)− F

)
= 0 (64)

should always hold, by Assumption 1. In this case, L̂ is inde-
pendent of η. Then, all the stationarity conditions and equality
feasibility conditions in the KKT conditions suffice to show
(59a) and (59b) and validate that (z∗, σ∗) is still an equilibrium
point of (28).

APPENDIX B
PROOF OF THEOREM 3

We explicitly demonstrate the asymptotic convergence of the
grid–market–participant loop (28). Let the largest invariant set
between the ON–OFF switches of the projection [·]+η be

S :=

{
(z, σ) | V̇ (z(t), σ(t)) ≡ 0, t ∈ R≥0\T

}
(65)

whereV (z, σ) is a real-valued Lyapunov function and T consists
of all the time epochs when the projection switches between ON

and OFF. The whole proof boils down to the following three
steps.

1) Step 1: Each trajectory (z(t), σ(t)) converges to the
largest invariant set S.

2) Step 2: Any trajectory (z(t), σ(t)) in the set S is an
equilibrium of the closed-loop system (28), i.e., S ⊂ E.

3) Step 3: Each trajectory (z(t), σ(t)) literally converges to
a single equilibrium point of the closed-loop system (28).

We next prove each individual step.
Step 1: The grid–market–participant loop (28) is essentially

implementing a (projected) saddle flow on L̂(z, σ), and each
equilibrium point (z∗, σ∗) is therefore a min–max saddle point
of L̂(z, σ) (within a specified domain). Consider the following
quadratic Lyapunov function for V (·):

V (z, σ) :=
1

2

[
z − z∗

σ − σ∗

]T [
T z

T σ

][
z − z∗

σ − σ∗

]
(66)

where (z∗, σ∗) is one arbitrary equilibrium point of the closed-
loop system (28). The Lie derivative of V (z, σ) along the
trajectory of (z(t), σ(t)) is given by

V̇ (z, σ)

= (z − z∗)TT z ż + (σ − σ∗)TT σσ̇ (67a)

= −(z−z∗)T∇zL̂(z, σ)+(σ−σ∗)T
[
∇σL̂(z, σ)

]+
η

(67b)

≤ − (z − z∗)T∇zL̂(z, σ) + (σ − σ∗)T∇σL̂(z, σ) (67c)

≤ L̂(z∗, σ)− L̂(z, σ) + L̂(z, σ)− L̂(z, σ∗) (67d)

= L̂(z∗, σ)− L̂(z∗, σ∗)︸ ︷︷ ︸
≤0

+ L̂(z∗, σ∗)− L̂(z, σ∗)︸ ︷︷ ︸
≤0

. (67e)

Equation (67b) applies (28). Equation (67c) uses the non-
expansive property of the projection [·]+η demonstrated in (2).
Equation (67d) results from the convexity (respectively, concav-
ity) of L̂(z, σ) in z (respectively, σ). Equation (67e) finally fol-
lows from the saddle property of the equilibrium point (z∗, σ∗).

Since V (z, σ) is radially unbounded, V̇ (z, σ) ≤ 0 indicates
that all the trajectories (z(t), σ(t)) remain bounded. It then
follows from the invariance principle for Caratheodory sys-
tems [30] that (z(t), σ(t)) converges to the largest invariant set S.

Step 2: For any trajectory (z(t), σ(t)) ∈ S, V̇ (z, σ) ≡ 0 en-
forces (67e) to be zero with

L̂(z(t), σ∗) ≡ L̂(z∗, σ∗) and L̂(z∗, σ(t)) ≡ L̂(z∗, σ∗). (68)

By Assumption 2, we have ż ≡ 0 and σ̇ ≡ 0 for any trajectory
(z(t), σ(t)) in the largest invariant set S, which is therefore an
equilibrium of the closed-loop system (28), i.e., S ⊂ E.

Step 3: We now show any trajectory (z(t), σ(t)) indeed
converges to one single equilibrium. First of all, along
any trajectory (z(t), σ(t)), V (z, σ) is nonincreasing in t.
Since V (z, σ) is lower bounded given its quadratic form,
there exists an infinite sequence of time epochs {tk, k =
1, 2, . . . } such that with k → ∞, we have V̇ (z(tk), σ(tk)) → 0,
i.e., (z(tk), σ(tk)) → (ẑ∗, σ̂∗) ∈ S ⊂ E. We use this specific
(ẑ∗, σ̂∗) as the equilibrium point in the definition of V (z, σ),
which implies V (z(t), σ(t)) → V (ẑ∗, σ̂∗) = 0. Due to the con-
tinuity of V (z, σ), (z(t), σ(t)) → (ẑ∗, σ̂∗) is enforced, which
therefore suggests that (z(t), σ(t)) indeed converges to one
single equilibrium point in S ⊂ E. �

APPENDIX C
PROOF OF PROPOSITION 1

Given L̂ in (38) and an arbitrary trajectory (z(t), σ(t)) of the
grid–market–participant loop (28) that satisfies

L̂(z(t), σ∗) ≡ L̂(z∗, σ∗) (69)

and

L̂(z∗, σ(t)) ≡ L̂(z∗, σ∗) (70)

differentiating (69) with respect to time yields

0 ≡
(
∇zL̂(z(t), σ

∗)
)T

ż

≡ −
(
∇zL̂(z(t), σ

∗)
)T

T z−1∇zL̂(z(t), σ
∗) (71)

which indicates ∇zL̂(z(t), σ
∗) ≡ 0 due to T z−1 	 0. Given σ∗,

the fact of ∇pL̂(z(t), σ
∗) ≡ 0 enforces p(t) ≡ p∗, due to the

monotonicity of ∇J(·).
Similarly, differentiating (70) with respect to time gives

0 ≡
(
∇σL̂(z

∗, σ(t))
)T

σ̇

≡
(
∇σL̂(z

∗, σ(t))
)T

T σ−1
[
∇σL̂(z

∗, σ(t))
]+
η

(72)

which still enforces ∇νL̂(z
∗, σ(t)) ≡ 0, ∇λL̂(z

∗, σ(t)) ≡ 0,
and meanwhile(

∇ηL̂(z
∗, σ(t))

)T
T η−1

[
∇ηL̂(z

∗, σ(t))
]+
η
≡ 0 (73)

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on October 01,2025 at 05:24:45 UTC from IEEE Xplore.  Restrictions apply. 



6828 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 70, NO. 10, OCTOBER 2025

due to T σ−1 	 0. Given p(t) ≡ p∗, the fact of ∇λL̂(z
∗, σ(t)) ≡

0 implies λ̇ ≡ 0. Meanwhile, in terms of (73), the inner term
HT (p∗ − d)− F of the projection [·]+η is a constant vector. Con-
sider an arbitrary eth element of the vector that falls into three
cases: (a) (HT (p∗ − d)− F )e > 0, (b) (HT (p∗ − d)− F )e =
0, and (c) (HT (p∗ − d)− F )e < 0. In case (a), η̇e > 0 drives
ηe(t) to infinity, which cannot happen since all the trajectories
in the largest invariant set S are bounded. Case (b) immedi-
ately implies η̇e ≡ 0. In case (c), since T η−1 	 0 is diagonal,
(∇ηL̂(z

∗, σ(t)))e < 0 enforces [(∇ηL̂(z
∗, σ(t)))e]+ηe

≡ 0, i.e.,
η̇e ≡ 0, in order for (73) to hold. As a result, η̇ ≡ 0 is guaranteed.
On top of λ̇ ≡ 0 and η̇ ≡ 0, T pṗ = λ(t) · 1−Hη(t)− ν(t)−
∇pJ(p

∗) ≡ 0 enforces ν̇ ≡ 0, or ν(t) ≡ ν̄, where ν̄ is constant.
The fact of ∇νL̂(z

∗, σ(t)) ≡ 0 suggests

p∗ − d−Dν̄ − CBθ̃∗ ≡ 0. (74)

Due to p∗ − d−Dν∗ − CBθ̃∗ = 0 from (12b) and (12e),
ν(t) ≡ ν̄ = ν∗ = 0 follows immediately due to D 	 0, which

further implies ˙̃
θ ≡ 0. This completes the proof of ż ≡ 0 and

σ̇ ≡ 0.

APPENDIX D
PROOF OF THEOREM 5

Recall the quadratic form of generation cost functions (50),
parameterized by c := (cj , j ∈ N ) and c̄ := (c̄j , j ∈ N ). We
further define c−1 := (c−1

j , j ∈ N ). Therefore, (49) can be more
explicitly expressed as

Tαα̇=
1

ρ
(λ · 1−Hη−ω−α)+q̂−diag(c−1)(λ · 1−Hη−ω−c̄).

(75)
With the closed-loop system (4), (49), and (56) defined on z =
(q̂, θ̃) andσ = (λ, ω, α, η),10 we can define a square matrixW ∈
R(3|N |+3|E|+1)×(3|N |+3|E|+1) to summarize the right-hand side
linear dependence of the differential equations (4), (49), and
(56) on (z, σ) such that we attain a more compact form[

T z

T σ

][
ż

σ̇

]
=

[
W

[
z

σ

]
+ β

]+
η

(76)

with a constant input β ∈ R3|N |+3|E|+1 given by

β :=
[
0 0 1T d −dT c̄T diag(c−1) −dTH − FT

]T
.

(77)
We focus on the trajectories (z(t), σ(t)) that start with initial

points in I. Note that we still have the equilibrium set and the
largest invariant set denoted as E and S, respectively, from (30)
and (65). Given the condition ρ ∈ (0, infj∈N 4cj), the whole

10Without loss of generality, we rearrange the variables in σ for ease of
analysis and presentation.

proof still follows the same three steps in the proof of Theorem 3
in Appendix B. We now show each individual step.

Step 1: We still adopt the standard quadratic Lyapunov func-
tion (66), but now (z∗, σ∗) is one arbitrary equilibrium point of
the closed-loop system (4), (49), and (56). We can acquire the
Lie derivative of V (z, σ) along the trajectory of (z(t), σ(t)) as

V̇ (z, σ) =

[
z − z∗

σ − σ∗

]T [
T z ż

T σσ̇

]
(78a)

=

[
z − z∗

σ − σ∗

]T[
W

[
z

σ

]
+β

]+
η

≤
[
z − z∗

σ − σ∗

]T(
W

[
z

σ

]
+ β

)
(78b)

=

[
z − z∗

σ − σ∗

]T
W

[
z − z∗

σ − σ∗

]
− (η − η∗)Tψ∗ (78c)

≤
[
z − z∗

σ − σ∗

]T
W

[
z − z∗

σ − σ∗

]
= −(σ − σ∗)TWσ(σ − σ∗)

(78d)

whereψ∗ ∈ R2|E|
≥0 denotes a complementary vector variable, and

Wσ ∈ R(2|N |+2|E|+1)×(2|N |+2|E|+1), with its explicit expression
in (80) shown at the bottom of this page, is a symmetric matrix
rearranged from the submatrix of −W that contains all the rows
and columns with regard to σ. Note that (78c) follows from the
equilibrium condition:

W

[
z∗

σ∗

]
+ β +

[
03|N |+|E|+1

ψ∗

]
= 0 (79)

along with the complementarity condition 0 ≤ η∗ ⊥ ψ∗ ≥ 0.
The inequality in (78d) results from the fact (η − η∗)Tψ∗ =
ηTψ∗ − η∗Tψ∗ = ηTψ∗ ≥ 0, and the equality in (78d) is at-
tained with all the terms regarding z − z∗ canceled out due to
the specific structure ofW . We show next the positive semidefi-
niteness ofWσ . LetR := I − ρ

2 · diag(c−1) be a diagonal matrix
and Wσ can be rewritten as

Wσ = ρ−1QT

⎡
⎢⎢⎢⎣
I −I −R −I
−I I + ρD R I

−R R I R

−I I R I

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
=:W in

σ

Q (81)

withQ := blockdiag(1, I, I,H) ∈ R4|N |×(2|N |+2|E|+1). The in-
ner matrix W in

σ ∈ R4|N |×4|N | of (81) can be further block
diagonalized by the following bijective linear transformation

Wσ :=

⎡
⎢⎢⎢⎣

|N |ρ−1 −ρ−1 · 1T 1
2 · c−1T − ρ−1 · 1T −ρ−1 · 1TH

−ρ−1 · 1 ρ−1 · I +D ρ−1 · I − 1
2 · diag(c−1) ρ−1 ·H

1
2 · c−1 − ρ−1 · 1 ρ−1 · I − 1

2 · diag(c−1) ρ−1 · I (
ρ−1 · I − 1

2 · diag(c−1)
)
H

−ρ−1 ·HT1 ρ−1 ·HT HT
(
ρ−1 · I − 1

2 · diag(c−1)
)

ρ−1 ·HTH

⎤
⎥⎥⎥⎦ . (80)
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P ∈ R4|N |×4|N |: Wσ = ρ−1QTPT ŴσPQ, with

Ŵσ :=

⎡
⎢⎢⎢⎣
I 0 0 0

0 ρD 0 0

0 0 I −R2 0

0 0 0 0

⎤
⎥⎥⎥⎦ , P :=

⎡
⎢⎢⎢⎣
I I R I

0 I 0 0

0 0 I 0

0 0 0 I

⎤
⎥⎥⎥⎦
−1

.

(82)
Note that I −R2 is still diagonal and it is easy to verify

that any arbitrary ρ ∈ (0, infj∈N 4cj) guarantees its positive
definiteness. Wσ � 0 then follows from I 	 0, ρD 	 0, and
I −R2 	 0.

Therefore, following (78d), we arrive at:

V̇ (z, σ) ≤ −(σ − σ∗)TWσ(σ − σ∗) ≤ 0. (83)

Since V (z, σ) is radially unbounded, V̇ (z, σ) ≤ 0 indicates
that all the trajectories (z(t), σ(t)) remain bounded. It then
follows from the invariance principle for Caratheodory systems
that (z(t), σ(t)) converges to the largest invariant set S.

Step 2: For an arbitrary trajectory (z(t), σ(t)) ∈ S, V̇ (z, σ) ≡
0 basically enforces (σ − σ∗)TWσ(σ − σ∗) ≡ 0. In light of the
structure of Wσ in (81), its semidefiniteness results from the
nontrivial null space of W in

σ and Q. As a result, we can char-
acterize the largest invariant set S as the union of the following
three sets:

S1 := {(z, σ) | σ(t) ≡ σ∗}
S2 := {(z, σ) |H(η(t)− η∗) ≡ 0, λ(t) ≡ λ∗, ω(t) ≡ ω∗,

× α(t) ≡ α∗}
S3 := {(z, σ) | (λ(t)− λ∗) · 1 ≡ H(η(t)− η∗), ω(t) ≡ ω∗,

× α(t) ≡ α∗} .
We next show S2 ≡ S3 by first claiming 1TH = 0. Recall

H = [(BCTL†)T ,−(BCTL†)T ] and L = CBCT . By defini-
tion of the Moore–Penrose inverse, it is straightforward to have
L†1 = 0, which immediately suggests 1TH = 0.

In S3, (λ(t)− λ∗) · 1 ≡ H(η(t)− η∗) leads to

1T · (λ(t)− λ∗) · 1︸ ︷︷ ︸
=|N |(λ(t)−λ∗)

≡ 1TH(η(t)− η∗)︸ ︷︷ ︸
=0

(84)

which enforces λ(t) ≡ λ∗ andH(η(t)− η∗) ≡ 0, i.e., S3 ⊂ S2.
Obviously, by definition, we have S2 ⊂ S3. Therefore, S2 and
S3 are equivalent.

Note that in any of the three sets, we have λ(t) ≡ λ∗, ω(t) ≡
ω∗, α(t) ≡ α∗, and Hη(t) ≡ Hη∗, which suffice to guarantee
˙̂q ≡ 0 and ˙̃

θ ≡ 0 immediately, or ż ≡ 0; recall (4a) and (56b).
Then, it suggests that the inner term of the projection [·]+η in (56d)
is a constant vector. For its eth entry, it could be (a) positive, (b)
zero, and (c) negative. In case (a), η̇e > 0 drives ηe(t) to infinity,
which contradicts the fact that all the trajectories in the largest
invariant set S are bounded. Case (b) directly implies η̇e ≡ 0.
In case (c), ηe(t) will be driven to stay at 0 that also suggests
η̇e ≡ 0. As a result, η̇ ≡ 0 holds.11 So far, σ̇ ≡ 0 has also been

11There might exist a trivial degenerate subspace in case (c), whereH(η(t)−
η∗) ≡ 0 holds with η̇ �≡ 0. However, in this subspace, if any, the system is still
in transient and will eventually converge to η(t) ≡ η∗. Therefore, we exclude it
from the characterization of S for conciseness.

guaranteed. Therefore, any trajectory (z(t), σ(t)) in the largest
invariant set S is an equilibrium of the closed-loop system (4),
(49), and (56), i.e., S ⊂ E.

Step 3: We now prove any trajectory (z(t), σ(t)) indeed
converges to one single equilibrium for completeness, despite
similar procedures to Step 3 in the proof of Theorem 3. We
observe that along any trajectory (z(t), σ(t)), V (z, σ) is nonin-
creasing in t. Since V (z, σ) is lower bounded given its quadratic
form, there exists an infinite sequence of time epochs {tk, k =
1, 2, . . . } such that with k → ∞, we have V̇ (z(tk), σ(tk)) → 0,
i.e., (z(tk), σ(tk)) → (ẑ∗, σ̂∗) ∈ S ⊂ E. We use this specific
(ẑ∗, σ̂∗) as the equilibrium point in the definition of V (z, σ),
which implies V (z(t), σ(t)) → V (ẑ∗, σ̂∗) = 0. Due to the con-
tinuity of V (z, σ), (z(t), σ(t)) → (ẑ∗, σ̂∗) is enforced, which
suggests that (z(t), σ(t)) literally converges to one single equi-
librium point in S ⊂ E.
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mented Lagrangian method for nonsmooth composite optimization,” IEEE
Trans. Autom. Control, vol. 64, no. 7, pp. 2861–2868, Jul. 2019.

[29] A. Cherukuri, E. Mallada, S. Low, and J. Cortés, “The role of convexity in
saddle-point dynamics: Lyapunov function and robustness,” IEEE Trans.
Autom. Control, vol. 63, no. 8, pp. 2449–2464, Aug. 2018.

[30] A. Bacciotti and F. Ceragioli, “Nonpathological Lyapunov functions
and discontinuous Carathéodory systems,” Automatica, vol. 42, no. 3,
pp. 453–458, 2006.

Pengcheng You (Member, IEEE) received the
B.S. and Ph.D. degrees in control from Zhejiang
University, Hangzhou, China, in 2013 and 2018,
respectively.

During the graduate studies, he was a Visit-
ing Student with Caltech and a Research Intern
with PNNL. He is currently an Assistant Profes-
sor with the Department of Industrial Engineer-
ing and Management, College of Engineering,
Peking University, Beijing, China. He also holds
a joint appointment with the National Engineer-

ing Laboratory for Big Data Analysis and Applications, Peking University.
Prior to joining PKU, he was a Postdoctoral Fellow with the ECE and ME
Departments, Johns Hopkins University. His research interests include
control, optimization, reinforcement learning, and market mechanisms,
with application to power and energy systems.

Yan Jiang received the B.Eng. degree in electri-
cal engineering and automation from the Harbin
Institute of Technology, Harbin, China, in 2013,
the M.S. degree in electrical engineering from
the Huazhong University of Science and Tech-
nology, Wuhan, China, in 2016, and the M.S.E.
degree in applied mathematics and statistics,
in 2021, and the Ph.D. degree in electrical en-
gineering from Johns Hopkins University, Balti-
more, MD, USA, in 2021.

From 2021 to 2024, she was a Postdoctoral
Scholar with the Department of Electrical and Computer Engineering,
University of Washington, Seattle, WA, USA. She is currently an Assis-
tant Professor with the School of Science and Engineering, The Chi-
nese University of Hong Kong, Shenzhen, China. Her research interests
include control, optimization, and learning, with application to power
systems.

Enoch Yeung (Member, IEEE) received the
B.S. degree in mathematics (magna cum laude
with University Honors) from Brigham Young
University, Provo, UT, USA, in 2010, and the
Ph.D. degree in control and dynamical sys-
tems from the California Institute of Technology,
Santa Barbara, CA, USA, 2016.

He is an Associate Professor with the Depart-
ment of Mechanical Engineering, University of
California, Santa Barbara. His research inter-
ests include learning algorithms for dynamical

systems, control theory, and control of biological networks.
Dr. Yeung was the recipient of the Kanel Foundation Fellowship, the

National Science Foundation Graduate Fellowship, the National De-
fense Science and Engineering Fellowship, the PNNL Project Team
of the Year Award, the PNNL Outstanding Performance Award, the
Keck Foundation Award, the NSF CAREER Award, and an ARO Young
Investigator Program Award.

Dennice F. Gayme (Senior Member, IEEE) re-
ceived the bachelor’s degree in mechanical en-
gineering and society from McMaster University,
Hamilton, ON, Canada, in 1997, the M.S. de-
gree in mechanical engineering from the Univer-
sity of California, Berkeley, CA, USA, in 1998,
and the Ph.D. degree in control and dynamical
systems from the California Institute of Technol-
ogy, Santa Barbara, CA, USA, in 2010.

She is currently a Professor of mechanical
engineering with Johns Hopkins University, Bal-

timore, MD, USA. Her research interests include modeling, analysis, and
control of spatially distributed and large-scale networked systems.

Dr. Gayme was the recipient of the JHU Catalyst Award in 2015,
ONR Young Investigator and NSF CAREER awards in 2017, a Whiting
School of Engineering Johns Hopkins Alumni Association Excellence in
Teaching Award in 2020, and the Turbulence and Shear Flow Phenom-
ena (TSFP12) Nobuhide Kasagi Award in 2022. She is a Fellow of the
American Physical Society (2024) and the Standing Chair of the Women
in Control Committee of the Control Systems Society of IEEE.

Enrique Mallada (Senior Member, IEEE) re-
ceived the B.S. degree in telecommunications
degree from Universidad ORT, Montevideo,
Uruguay, in 2005, and the Ph.D. degree in elec-
trical and computer engineering with a minor
in applied mathematics from Cornell University,
Ithaca, NY, USA, in 2014.

Prior to joining John Hopkins University, Balti-
more, MD, USA, in 2016, he was a Postdoctoral
Fellow with the Center for the Mathematics of
Information, Caltech from 2014 to 2016. He is

currently an Associate Professor of electrical and computer engineering
with Johns Hopkins University. His research interests include the areas
of control, dynamical systems, and optimization, with applications to
engineering networks, such as power systems and the Internet.

Dr. Mallada was the recipient of the NSF CAREER Award in 2018, the
ECE Director’s PhD Thesis Research Award for his dissertation in 2014,
the Center for the Mathematics of Information Fellowship from Caltech
in 2014, and the Cornell University Jacobs Fellowship in 2011.

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on October 01,2025 at 05:24:45 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


