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Reinforcement Learning for Optimal Primary
Frequency Control: A Lyapunov Approach
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Abstract—As more inverter-connected renewable resources are
integrated into the grid, frequency stability may degrade because
of the reduction in mechanical inertia and damping. A common
approach to mitigate this degradation in performance is to use the
power electronic interfaces of the renewable resources for primary
frequency control. Since inverter-connected resources can realize
almost arbitrary responses to frequency changes, they are not
limited to reproducing the linear droop behaviors. To fully leverage
their capabilities, reinforcement learning (RL) has emerged as a
popular method to design nonlinear controllers to optimize a host
of objective functions. Because both inverter-connected resources
and synchronous generators would be a significant part of the grid
in the near and intermediate future, the learned controller of the
former should be stabilizing with respect to the nonlinear dynamics
of the latter. To overcome this challenge, we explicitly engineer
the structure of neural network-based controllers such that they
guarantee system stability by construction, through the use of a
Lyapunov function. A recurrent neural network architecture is
used to efficiently train the controllers. The resulting controllers
only use local information and outperform optimal linear droop as
well as other state-of-the-art learning approaches.

Index Terms—Power system dynamics, primary frequency
control, nonlinear systems, reinforcement learning.

I. INTRODUCTION

DUE to the shift from conventional generation to renewable
resources such as wind, solar, and storage, there has been

noticeable degradation of system frequency dynamics [1]. In the
near and intermediate future, both inverter-connected resources
and synchronous generators would play significant roles in the
grid. Therefore, the inverters still need to “play nice” with syn-
chronous generators, where they need to respect the dynamics
of the generators and help maintain the stability of the grid. A
degradation in the frequency dynamics would increase the risk
of load shedding and blackouts, which in turn limits the amount
of renewable energy that can be integrated.

A widely adopted approach to use inverter-connected re-
sources to provide primary frequency regulation is to engi-
neer them to respond as conventional synchronous generators
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through frequency droop controls. Because of the mechanical
characteristic of conventional generators, droop controls are
typically linear functions of frequency deviations (with possible
deadbands and saturation) [2]. Inverter-connected resources can
mimic this behavior by changing their active power setpoints
subject to frequency deviations [3], [4]. However, as for the
common performance metrics adopted in practice, including
frequency deviations and control costs [5], [6], linear controllers
are not optimal [7]. Since inverters are solid state electronic
devices, they can implement almost arbitrary control laws by
quickly adjusting their power setpoints, subject to some actua-
tion limits [8], [9]. Then a natural question arises: are there other
control laws that still guarantee the stability of a system with
synchronous generators, but have more optimal performance
compared to linear droop response?

It turns out that designing optimal controllers that respect
the dynamics of power systems is not trivial. Power system
dynamics are governed by nonlinear swing equations and thus
even optimizing linear controllers is a difficult problem. For non-
linear controllers, they need to be parameterized in a tractable
fashion for optimization. More importantly, the controllers need
to stabilize the frequency dynamics of the grid, which introduces
nonlinear constraints that are not easy to work with algebraically.
A standard approach to overcome some of the above difficulties
is to work with the linearized small signal model, where con-
trollers can be designed to guarantee asymptotic stability [5], [6].
However, stability becomes more crucial when state deviations
are large, where the nonlinear dynamics have to be considered.
When nonlinear dynamics are considered, most approaches are
restricted to tuning the slopes of the linear droop controllers [4].
To obtain better performances, model predictive control has also
been used [7], [9], but they require robust real-time communi-
cation and computation capabilities, which is not yet available
for much of the current system.

To break the unenviable position of not fully utilizing the
capabilities of inverters for frequency control, a number rein-
forcement learning (RL) approaches have been proposed [10]–
[12]. Specifically, (deep) neural networks are often used to
parameterize the controllers and RL is used to train them. A
number of algorithms, including deterministic policy gradient
algorithm, multi-Q-learning and actor-critic methods, have been
used in frequency regulation and other control problems. The key
challenge in using RL is to guarantee that learned controllers
are stabilizing, that is, frequencies in the system would reach a
stable equilibrium after disturbances in the system. To this end,
existing approaches typically use soft penalties by adding a high
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cost when states leave prescribed ranges [10], [13]. However,
these approaches are ad hoc. Stability should be treated as a
hard constraint rather than through penalties, which is especially
important since training can only be done on a limited number
of samples while the controller should be stabilizing over a set
of points in the state space. Another challenge comes from the
controller training process. Generated trajectories are normally
used to train the neural network controllers, but the evolution
of state variables over long time horizons makes direct back-
propagation inefficient. Approaches that use approximate value
(or Q) function assume that the states are in a stationary probabil-
ity distribution [14], which is generally not true during transients.
Lyapunov functions have been used as constraints [15], but
learning was not considered and controllers was manually tuned.
This paper proposes a recurrent neural network (RNN)-based RL
framework to solve optimal primary frequency control problem
with a stability guarantee. We derive a simple algebraic condition
on the nonlinear controllers that guarantee local exponential
stability of the system. More precisely, using Lyapunov theory,
we show that the function from the frequency deviation to the
active power output implemented by a controller needs to be
monotonic and through the origin at each bus. The controllers
are decentralized (each only using the frequency deviation at
its own bus) and the stability guarantee holds for most system
parameters and topologies.

The monotonicity of the controller is realized through a
stacked-ReLU neural network which can be designed explicitly.
In order to train the controllers efficiently, we design a RNN
framework where the time-coupled variables in the power sys-
tem form the cell component of the RNN. Simulation results
show that the proposed method can learn a static nonlinear
controller that performs better than traditional linear droop
control. Furthermore, we show that RL without considering
stability can lead to unstable controllers, whereas our approach
always maintains stability. Code and data are available at https:
//github.com/Wenqi-Cui/RNN-RL-Frequency-Lyapunov.

In summary, the main contributions of the paper are:
1) A Lyapunov function is integrated in the structural proper-

ties of controllers, guaranteeing local asymptotic stability
over a large set of states. Namely, the controllers need to
be monotonic functions crossing the origin.

2) The controller is parameterized with a stacked-ReLU neu-
ral network and a RNN-based RL framework is proposed
to efficiently train the controllers.

The remaining of this paper is organized as follows. Section II
introduces the system model and the optimal control problem.
Section III provides the main theorems governing the structure
of a stabilizing controller and illustrates how it can be achieved
via neural networks. Section IV shows how they can be trained
efficiently. Section V shows the simulation results. Section VI
concludes the paper.

II. MODEL AND PROBLEM FORMULATION

A. Power System Model

Consider a n-bus power system that can be modelled as a
connected graph (V, E). Specifically, buses are indexed by i, j ∈

Fig. 1. Block diagram of frequency control loop [2]. The blue blocks constitute
the dynamics of the system. High-order models are used in simulations and
simplified models are used for analysis.

V := [n] := {1, . . . , n} and transmission lines are denoted by
unordered pairs {i, j} ∈ E ⊂ {i, j}i, j ∈ V, i �= j. Let states
variables be phase angle θ := (θi, i ∈ [n]) ∈ Rn and frequency
deviation from the nominal value ω := (ωi, i ∈ [n]) ∈ Rn.1

In this paper, we consider static local feedback controllers:
bus i measures its local frequency deviation ωi and applies a
time-invariant function to determine the control action ui. Thus,
the controller on the bus i is written as ui(ωi). The control
action changes the active power coming from inverter-connected
resources (e.g., solar PV and storages).

We assume the bus voltage magnitudes are 1 per unit and
the reactive power flows and injections are ignored. This is the
commonly used lossless power flow model, which is suitable to
primary frequency control of transmission systems with small
resistances and well-regulated voltages [16]. Let pm,i, pe,i and
pl,i be the mechanical power, electrical power, and load at bus i,
respectively. Denote Mi and Li as the inertia constant and load
damping coefficient at bus i. We assume coherency between the
internal (rotor) angle and terminal (bus) voltage phase angles of
the synchronous generators [5], [17]–[19] (numerical validation
are given in Appendix X). Then, the frequency dynamics2 is
given by the swing equation [2]:

θ̇i = ωi , (1a)

Miω̇i = pm,i − pl,i − pe,i − Liωi − pre,i . (1b)

Here, pre,i is the active power injection from inverter-
connected resources at bus i, which follows the setpoint given
by the control lawui(ωpll,i), i.e., pre,i = ui(ωpll,i), whereωpll,i is
the frequency deviation of bus i read from the phase-locked-loop
(PLL). The diagram of the frequency control loop for the sys-
tem (1) is shown in Fig. 1 [2], [20]. All of our simulations use the
6th-order generator model with turbine-governing system and
we use dynamic model for inverter-connected resources (blue
blocks in Fig. 1). The speed droop response with coefficient
1
Ri

for synchronous generator at bus i is implemented through
turbine-governing systems, see [2, Chapter 11] for details.

1Throughout this paper, vectors are denoted in lower case bold and matrices
are denoted in upper case bold, while scalars are unbolded.

2The phase angle dynamics are utilized to derive the structure of stabilizing
controller. We do not make any changes to the rotor angle control on synchronous
generators.
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As in most existing literature [21]–[24], we use the classical
2nd-order model for synchronous generators in theoretical anal-
ysis. Under the classical 2nd-order model, the electrical power
is pe,i =

∑n
j=1 Bij sin(θi − θj) and the mechanical power is

pm,i = pg,i − 1
Ri

ωi with pg,i being the active power setpoint
of the generator. Let pi := pg,i − pl,i represent the net power
injection of bus i at the generator setpoint. LetDi :=

1
Ri

+ Li be
the combined frequency response coefficient from synchronous
generators and load. Considering the much faster time response
of PLLs and inverters [25], we assume that the measured
frequency deviation ωpll,i accurately approximate ωi and thus
pre,i = ui(ωi). Then, the system dynamics in (1b) becomes

Miω̇i = pi −Diωi − ui(ωi)−
n∑

j=1

Bij sin(θi − θj), (2)

where M := diag(Mi, i ∈ [n]) ∈ Rn×n are the generator iner-
tia constants,D := diag(Di, i ∈ [n]) ∈ Rn×n are the combined
frequency response coefficients from synchronous generators
and frequency sensitive load, p := (pi, i ∈ [n]) ∈ Rn are the
net power injections,B := [Bij ] ∈ Rn×n is the susceptance ma-
trix withBij = 0, ∀{i, j} /∈ E , andu(ω) := (ui(ωi), i ∈ [n]) ∈
Rn.

B. Optimization Problem Formulation

As mentioned above, we would like to design control func-
tions ui(ωi)’s that can improve frequency deviation with a
moderate control cost. Therefore, we consider two costs in
the objective function of the optimal primary frequency con-
trol problem: the cost on frequency deviations and the cost of
controllers [6], [7], [26], [27]. For a time horizon of length
T , a reasonable cost on frequency deviation is represented by
the infinity norm of ωi(t) over the time horizon from 0 to T ,
i.e., ‖ωi‖∞ := sup0≤t≤T |ωi(t)|, which quantifies the maximum
frequency deviation during the time horizon. The cost on control
actions is a Lipschitz-continuous function written as Ci(ui) for
bus i = 1, . . . , n. For example, for a battery, we can set C to
reflect its operating (i.e., degradation and energy) cost as in [28],
[29]. The optimization problem is:

min
u

n∑
i=1

(‖ωi‖∞ + γCi(ui)) (3a)

s.t. θ̇i = ωi (3b)

Miω̇i = pi−Diωi−ui(ωi)−
n∑

j=1

Bij sin(θi−θj) (3c)

ui ≤ ui(ωi) ≤ ui (3d)

ui(ωi) is stabilizing. (3e)

Here, γ in (3a) is a coefficient that trades off the cost of action
with respect to frequency deviation. In a more general problem
setting, distinct weightsγi’s can be assigned to individual control
actions to achieve a desirable frequency performance at an
acceptable level of control action [23]. In practice, the power

Fig. 2. Reinforcement learning for the frequency control problem.

inputs from inverter-based resources are always bounded by
saturation. Hence, the lower and upper bounds for the control
action at bus i are included as ui and ui, respectively, in (3d).
The special case where ui = ui = 0 can be used to characterize
a bus i with no controllable resources. Last but not least, we
include the requirement that ui(ωi)’s stabilize the system (1) as
a hard constraint in (3e).

C. Reinforcement Learning for Optimal Frequency Control

In (3), we are optimizing the functionu(·), which is an infinite
dimensional problem. To parameterize and find a good con-
troller, reinforcement learning (RL) has emerged as an attractive
alternative, where controllers are parameterized by neural net-
works. Thus, we parameterize each of the controllers ui(ωi) as
a neural network with weight ϕi, sometimes written as uϕi

(ωi).
Then, RL trains neural networks by updating ϕi’s to minimize
the loss given by the objective function in (3a).

The major challenge for RL comes from the hard constraint on
the stability of the system. Although we can add a high penalty
to the large magnitude of ωi, such a penalty does not guarantee
that the stability constraints are always satisfied. In fact, learned
controllers that lead to reasonably looking trajectories in training
may destabilize the system during testing. To overcome this
challenge, we directly use the physical model (1) to derive
the structure of the stabilizing controller based on Lyapunov
stability theory. As illustrated in Fig. 2(b) and discussed in
Section III, stability can be guaranteed by enforcing a structure
on the controllers uϕi

(ωi)’s.
To use RL, we need to discretize the system dynamics in (1).

The weights ϕi’s impact system behaviors across all of the time
steps, which makes direct back propagation inefficient. Thus,
we use the state transition dynamics to create a RNN framework
to increase training efficiency, as illustrated in Fig. 2(c). Details
are elaborated in Section IV.
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III. STRUCTURAL PROPERTIES OF THE CONTROLLER

To constrain the search space in (3) to the set of stabilizing
controllers, we derive structural properties that the controllers
should satisfy from Lyapunov stability theory. More precisely,
by finding an appropriate Lyapunov function, we show that, if
the output of each controller is monotonically increasing with
respect to the frequency deviation, then the system has a unique
equilibrium that is locally exponentially stable. In addition, we
directly engineer this monotonicity feature into neural networks
via properly designed weights and biases. These weights and
biases are then trained to optimize the objective function in (3a).

A. Uniqueness of the Equilibrium

Since the frequency dynamics of the system in (1b) depends
only on the phase angle differences, to characterize the equi-
librium of the dynamics (1), we make the following change of
coordinates:

δi := θi − 1

n

n∑
j=1

θj ,

where δ := (δi, i ∈ [n]) ∈ Rn can be understood as the center-
of-inertia coordinates [16], [30]. Then, the system dynamics
in (1) can be written as

δ̇i = ωi − 1

n

n∑
j=1

ωj , (4a)

Miω̇i = pi −Diωi − ui(ωi)−
n∑

j=1

Bij sin(δi − δj) . (4b)

Under an arbitrary control law ui(ωi), there may not exist a
well-defined equilibrium point which the system will settle into.
In the next lemma, we show that an unique equilibrium exists if
the controllers satisfy a certain structure property.

Lemma 1 (Unique equilibrium): Suppose the function ui(ωi)
is a monotonically increasing function of the local frequency
deviation ωi. Suppose the angles at the equilibrium satisfy |δ∗i −
δ∗j | ∈ [0, π/2) for all i connected to j. Then there exists an unique
equilibrium point (δ∗,1ω∗) described by

0 = pi −Diω
∗ − ui(ω

∗)−
n∑

j=1

Bij sin(δ
∗
i − δ∗j) , (5a)

n∑
i=1

pi =

n∑
i=1

ui(ω
∗) + ω∗

n∑
i=1

Di , (5b)

if the power flow equations (5a) are feasible, where 1 is a vector
of all 1’s with an appropriate dimension.

Proof: First of all, in steady state, (4) yields

0 = ω∗i −
1

n

n∑
j=1

ω∗j , (6a)

0 = pi −Diω
∗
i − ui(ω

∗
i )−

n∑
j=1

Bij sin(δ
∗
i − δ∗j) . (6b)

Clearly, (6a) implies that the frequency deviation at each bus
synchronizes to the same solution that ω∗i = ω∗, and we have
the desired equations in (5a). Since the system is lossless and
Bij = Bji, the net power flow,

∑n
i=1

∑n
j=1 Bij sin(δ

∗
i − δ∗j),

is zero. Using this fact and by summing (5a), we get (5b).
Next, we show the uniqueness ofω∗ by contradiction. Suppose

that both ω∗ and ω̂ satisfy (5b), where ω∗ �= ω̂. Then,

n∑
i=1

ui(ω
∗) + ω∗

n∑
i=1

Di =
n∑

i=1

ui(ω̂) + ω̂
n∑

i=1

Di ,

which yields
n∑

i=1

ui(ω
∗)− ui(ω̂)

ω∗ − ω̂
= −

n∑
i=1

Di < 0 . (7)

However, if ui(ωi) is monotonically increasing, the left hand
side of the equality in (7) must be nonnegative, which is a
contradiction. The uniqueness of δ∗ follows from the same
argument as in [31, Lemma 1]. �

Note that the angles δ are constrained to be in the region
denoted by Θ := {δ||δi − δj | ∈ [0, π/2), ∀{i, j} ∈ E}, which
is sufficiently large to include almost all practical scenarios and
is a common assumption in literature [16], [30].

B. Lyapunov Stability Analysis

In this subsection, we further show that the equilibrium point
(δ∗,ω∗) described by (5) is locally exponentially stable if the
controllers are monotone. The next theorem is the main result
of the paper.

Theorem 1 (Local exponential stability): If the control out-
put ui(ωi) is a monotonically increasing function of the
local frequency deviation ωi, then the equilibrium point
(δ∗,1ω∗) described by (5) is locally exponentially stable.
In particular, the region of attraction include the set D :=
(δ,ω) ∈ Rn ×Rn|δi − δj | ∈ [0, π/2) for i, j connected.

The qualifier “local” in Theorem 1 is necessary since we
need to assume that the trajectories start within the region of
attraction. We note that this is far less restrictive than standard
local convergence results in nonlinear systems, where the region
of attraction is confined to be close to the equilibrium point [32].
The region of attraction in Theorem 1 is quite large and include
most operating points of interest.

Theorem 1 gives structural properties3 for controllers that
guarantee exponential stability that does not depend on system
parameter and topologies. Therefore, the optimal performance
comes from training on a particular system, but the stability guar-
antees do not. This robustness to uncertainties is a key advantage
of constraining the structure of networks compared to purely
model-free RL approaches. The design of neural networks is
given in the next section (Section III-C) and the rest of this
section outlines the proof of Theorem 1.

From Lyapunov stability theory, if there exists a Lyapunov
functionV (δ,ω) such that V̇ (δ,ω) ≤ −cV (δ,ω) for a constant
c > 0, then the system is exponentially stable [32]. Therefore,

3These are sometimes called extended class κ functions
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we prove Theorem 1 by constructing a qualified Lyapunov func-
tion and showing that such a constant c exist. Inspired by [30],
we consider the following Lyapunov function candidate:

V (δ,ω) =
1

2

n∑
i=1

Mi(ωi − ω∗)2 +Wp(δ) + εWc(δ,ω) (8)

with

Wp(δ) := − 1

2

n∑
i=1

n∑
j=1

Bij

(
cos(δij)− cos(δ∗ij)

)

−
n∑

i=1

n∑
j=1

Bij sin(δ
∗
ij)(δi − δ∗i ) ,

Wc(δ,ω) :=
n∑

i=1

n∑
j=1

Bij

(
sin(δij)− sin(δ∗ij)

)
Mi(ωi − ω∗) ,

where δij := δi − δj and ε > 0 is a tunable parameter that
should be set small enough. The physical intuition for the
Lyapunov function can be found in [30], [33]. Strictly speaking,
this function is not a “true” Lyapunov function since it is not
bounded below. The following lemma proves that V (δ,ω) is
a well-defined Lyapunov function on the domain D, which
suffices to show that trajectories starting in D converge to the
equilibrium. Then Lemma 3 derives the time derivative V̇ (δ,ω)
and Lemma 4 shows there exists a constant c > 0 such that
V̇ (δ,ω) ≤ −cV (δ,ω).

Lemma 2 (Bounds on Lyapunov function): ∀(δ,ω)∈D, the
Lyapunov function V (δ,ω) in (8) satisfies

V (δ,ω) ≥ α1

(‖δ − δ∗‖22 + ‖ω − ω∗‖22
)
,

V (δ,ω) ≤ α2

(‖δ − δ∗‖22 + ‖ω − ω∗‖22
)
,

for some constants α1 > 0 and α2 > 0.
The proof is given in Appendix A. It follows directly from

Lemma 2 that V (δ∗,ω∗) = 0 and V (δ,ω) > 0, ∀(δ,ω) ∈ D \
(δ∗,ω∗). To show V (δ,ω) is a Lyapunov function on D, we
need to show V̇ (δ,ω) decreases in D.

Lemma 3 (Time derivative): The time derivative of V (δ,ω)
defined in (8) is given by

V̇ (δ,ω) = −
[
pe(δ)−pe(δ

∗)
ω−ω∗

]T

Q(δ)

[
pe(δ)−pe(δ

∗)
ω−ω∗

]

− [ω−ω∗+ε (pe(δ)−pe(δ
∗))]T (u(ω)− u(ω∗))

(9)

with

Q(δ) :=

⎡
⎣ εI

ε

2
D

ε

2
D D − ε

2
(H(δ)M +MH(δ))

⎤
⎦ , (10)

which is positive definite for ε small enough, pe(δ) :=
(pe,i(δ) :=

∑n
j=1 Bij sin(δij), i ∈ [n]) ∈ Rn and H(δ) =

∇pe(δ) := [Hij ] ∈ Rn×n such that

Hij :=

{
−Bij cos(δij) if i �= j∑n

j′=1,j′ �=i Bij′ cos(δij′) if i = j
, ∀i, j ∈ [n] .

(11)

The proof is given in Appendix B. The cross term [ω −
ω∗ + ε(pe(δ)− pe(δ

∗))]T (u(ω)− u(ω∗)) generally compli-
cates the analysis of V̇ (δ,ω). But when ui(ωi) is monotonically
increasing with respect toωi, (ui(ωi)− ui(ω

∗)) is the same sign
with (ωi − ω∗) and leads to nonnegative cross terms for small ε,
implying that V̇ (δ,ω) < 0,∀(δ,ω) ∈ D \ (δ∗,ω∗) and thus the
system is locally asymptotically stable at the equilibrium point
(δ∗,ω∗). In the next lemma, we further show local exponential
stability of the equilibrium.

Lemma 4 (Bounds on the time derivative): If ui(ωi) is mono-
tonically increasing with respect to ωi, then there exists a con-
stant c > 0 such that V̇ (δ,ω) ≤ −cV (δ,ω).

Proof: First, we show that the cross term related to ui(ωi) is
nonnegative for sufficiently small ε. Define

ki(ωi) :=

⎧⎨
⎩

ui(ωi)− ui(ω
∗
i )

ωi − ω∗i
if ωi �= ω∗i

0 if ωi = ω∗i
, ∀i ∈ [n] .

Then, K(ω) := diag(ki(ωi), i ∈ V) ∈ Rn×n 
 0 if ui(ωi) is
monotonically increasing with respect to ωi. Hence,

[ω − ω∗ + ε (pe(δ)− pe(δ
∗))]T (u(ω)− u(ω∗))

= (ω − ω∗)T K(ω) (ω − ω∗)

+ ε (pe(δ)− pe(δ
∗))T K(ω) (ω − ω∗) ≥ 0

for small enough ε.
Then, V̇ (δ,ω) can be by bounded by the quadratic term

related to Q(δ) in (9) as follows:

V̇ (δ,ω) (12)

≤ −
[
pe(δ)−pe(δ

∗)
ω−ω∗

]T

Q(δ)

[
pe(δ)−pe(δ

∗)
ω−ω∗

]

(a)

≤ −λmin(Q(δ))
(‖pe(δ)−pe(δ

∗)‖22 + ‖ω−ω∗‖22
)

(b)

≤ −λmin(Q(δ))
(
γ1‖δ−δ∗‖22 + ‖ω−ω∗‖22

)
≤ −λmin(Q(δ))min(1, γ1)

(‖δ−δ∗‖22 + ‖ω−ω∗‖22)
(c)

≤ −λmin(Q(δ))min(1, γ1)
1

α2
V (δ,ω)

≤ −cV (δ,ω) (13)

with

c :=

(
min

δ:|δi−δj |∈[0,π/2),∀{i,j}∈E
λmin(Q(δ))

)
min(1, γ1)

α2
> 0,

where (a) is given by the Rayleigh-Ritz theorem, (b) is by [31,
Lemma 4] with γ1 := minδ̃∈Θ λ2(H(δ̃))2, and (c) follows from
Lemma 2. �

Authorized licensed use limited to: University of Washington Libraries. Downloaded on February 28,2023 at 19:50:03 UTC from IEEE Xplore.  Restrictions apply. 



CUI et al.: REINFORCEMENT LEARNING FOR OPTIMAL PRIMARY FREQUENCY CONTROL: A LYAPUNOV APPROACH 1681

C. Design of Neural Network Controllers

In this paper, we parametrize the controllers uϕi
(ωi) by a

single hidden layer neural network. We assume that the processes
such as automatic generation control (AGC) adjust the power set-
point of generators to make the net power injection around zero,
i.e.,

∑n
i=1 pi = 0. For controllers ui(ωi)’s that provide primary

frequency response, we set ui(0) = 0 so the controllers take no
action when there is no frequency deviation. By Theorem 1, we
design the neural networks to have the following structures such
that the controller will be locally exponentially stabilizing:

1) uϕi
(ωi) is monotonically increasing;

2) uϕi
(ωi) = 0 for ωi = 0;

3) ui ≤ uϕi
(ωi) ≤ ui (saturation constraints).

The first two requirements are equivalent to designing a mono-
tonic increasing function through the origin. This is constructed
by decomposing the function into positive and negative parts
as fi(ωi) = f+

i (ωi) + f−i (ωi), where f+
i (ωi) is monotonic in-

creasing forωi > 0 and zero whenωi ≤ 0; f−i (ωi) is monotonic
increasing for ωi < 0 and zero when ωi ≥ 0. The saturation
constraints can be satisfied by hard thresholding the output of
the neural network.

The function f+
i (ωi) and f−i (ωi) are constructed using a

single-layer neural network designed by stacking the ReLU
function σ(x) = max(x, 0). Let m be the number of hidden
units. For f+

i (ωi), let qi = [q1i q2i · · · qmi ] be the weight vector
of bus i; bi = [b1i b2i · · · bmi ]ᵀ be the corresponding bias vector.
For f−i (ωi), let zi = [z1i z2i · · · zmi ] be the weights vector and
ci = [c1i c2i · · · cmi ]ᵀ be the bias vector. Denote 1 ∈ Rm as the
all 1’s column vector. The detailed construction of f+

i (ωi) and
f−i (ωi) is given in Lemma 5.

Lemma 5: Let σ(x) = max(x, 0) be the ReLU function.
The stacked ReLU function constructed by (14) is monotonic
increasing for ωi > 0 and zero when ωi ≤ 0.

f+
i (ωi) = qiσ(1ωi + bi) (14a)

where
l∑

j=1

qji ≥ 0, ∀l = 1, 2, . . . ,m (14b)

b1i = 0, bli ≤ b
(l−1)
i , ∀l = 2, 3, . . . ,m (14c)

The stacked ReLU function constructed by (15) is monotonic
increasing for ωi < 0 and zero when ωi ≥ 0.

f−i (ωi) = ziσ(−1ωi + ci) (15a)

where
l∑

j=1

zji ≤ 0, ∀l = 1, 2, . . . ,m (15b)

c1i = 0, cli ≤ c
(l−1)
i , ∀l = 2, 3, . . . ,m (15c)

Proof: Note that the ReLU function σ(x) is linear with x
when activated (x > 0) and equals to zero when deactivated
(x ≤ 0), we construct the monotonic increasing functionf+

i (ωi)
by stacking the function gli(ωi) = qliσ(ωi + bli), as illustrated

by Fig. 3. Since b1i = 0 and bli ≤ b
(l−1)
i , ∀1 ≤ l ≤ m, gli(ωi) is

activated in sequence from g1i (ωi) to gmi (ωi) with the increase
of ωi. In this way, the stacked function is a piece-wise linear

Fig. 3. Stacked ReLU neural network to formulate a monotonic increasing
function through the origin.

function and the slope for each piece is
∑l

j=1 q
j
i . Monotonic

property can be satisfied as long as the slope of all the pieces
are positive, i.e.,

∑l
j=1 q

l
i ≥ 0, ∀1 ≤ l ≤ m. Similarly, f−i (ωi)

also construct by ReLU function activated for negative wi in
sequence corresponding to cli for l = 1, . . . ,m.

∑l
j=1 z

j
i ≤ 0

means that all the slope of the piece-wise linear function is
positive and therefore guarantees monotonicity. �

Note that there still exists inequality constraints in (14) and
(15), which makes the training of the neural networks cum-
bersome. We can reformulate the weights to get an equivalent
representation that is easier to deal with in training. Define the
non-negative vectors q̂i = [q̂1i · · · q̂mi ] and b̂i = [b̂1i · · · b̂mi ]ᵀ.

Then, (14b) is satisfied if q1i = q̂1i , qli = q̂li − q̂
(l−1)
i for l =

2, . . . ,m. (14c) is satisfied if b1i = 0, bli = −
∑l

j=2 b̂
j
i for

l = 2, . . . ,m. Similarly, define ẑi = [ẑ1i · · · ẑmi ] ≥ 0 and ĉi =
[ĉ1i · · · ĉmi ]ᵀ ≥ 0. Then, (15b) is satisfied if z1i = −ẑ1i , zli =

−ẑli + ẑ
(l−1)
i for l = 2, . . . ,m. (15c) is satisfied if c1i = 0, cli =

−∑l
j=2 ĉ

l
i for l = 2, . . . ,m. If the dead-band of the frequency

deviation within the range [−d, d] is required, it can be easily
satisfied by setting b2i = −d, q1i = 0 and c2i = −d, z1i = 0 in
(14) and (15).4

The next Theorem states the converse of Lemma 5, that is,
the constructions in (14) and (15) suffice to approximate all
functions of interest.

Theorem 2: Let r(x) be any continuous, Lipschitz and
bounded monotonic function through the origin with bounded
derivatives, mapping compact set X to R. For any ε > 0, there
exists a function f(x) = f+(x) + f−(x) constructed by (14)
and (15) such that |r(x)− f(x)| < ε when x ∈ X.

The proof is given in Appendix C. Note that f(x) is a
single-layer neural network. When approximating an arbitrary
function, the number of neurons and the height will depend on ε.
Since the controller in this paper is bounded, the stacked-ReLU

4A deadband is often enforced for generator droop control to reduce mechan-
ical stress. For inverters, we do not set mandatory dead-bands.
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neural network with limited number of neurons is sufficient
for parameterization. The last step is to bound the output of
the neural networks, which can be done easily using ReLU
activation functions.

Lemma 6: The neural network controller ui(ωi) given be-
low is a monotonic increasing function through the origin and
bounded in [ui, ui] for all i = 1, . . . , N :

ui(ωi) = ui − σ(ui − f+
i (ωi)− f−i (ωi))

+ σ(ui − f+
i (ωi)− f−i (ωi)) (16)

The proof of this lemma is by inspection.

IV. LEARNING CONTROL POLICIES USING RNNS

The structure of the controllers are decided by the construc-
tions in (14), (15) and (16). In this section we develop a RNN
based RL algorithm to learn their weights and biases.

A. Discretize Time System

To learn the controller and simulate the trajectories of the
system, we discretize the dynamics (1) with step size Δt. We
use k and K to represent the discrete time and the total number
of stages, respectively. The states (θi, wi) at bus i evolves along
the trajectory are represented as θi = (θi(0), θi(1), . . . , θi(K))
and ωi = (ωi(0), ωi(1), . . . , ωi(K)) over K stages, with the
control sequence uϕi

= (uϕi
(ωi(0)), . . . , uϕi

(ωi(K))). The
infinity norm of the sequence of ωi(k) is then defined by
||ωi||∞ = maxk=0,...,K |wi(k)|. The cost on controller is the
quadratic function of action The optimization problem is

min
ϕ

n∑
i=1

(||ωi||∞ + γCi(uϕi
)) (17a)

s.t. θi(k) = θi(k − 1) + ωi(k − 1)Δt (17b)

ωi(k) = −Δt

Mi

|B|∑
j=1

Bij sin(θij(k − 1)) +
Δt

Mi
pm,i

+

(
1− DiΔt

Mi

)
ωi(k − 1)− Δt

Mi
uϕi

(ωi(k − 1))

(17c)

ui ≤ uϕi
(ωi(k)) ≤ ui (17d)

ωi(k)uϕi
(ωi(k)) ≥ 0 (17e)

uϕi
(·) is increasing (17f)

and all equations hold for i = 1, . . . , n. The constraints (17e)
and (17f) guarantee exponentially stability.

Note that the optimization variable ϕ exists in all the time
steps in (17). A straightforward gradient-based training ap-
proach is challenging since we need to calculate the gradient
all the way to the first time step for all time steps k = 0, . . . ,K.
To mitigate this challenge, we propose a RNN-based framework
that integrates the state transition dynamics (17b) and (17c). This
way, the gradient of the optimization objective with respect to
ϕ can be computed efficiently through back-propagation.

Fig. 4. Structure of RNN for the frequency control problem.

B. RNN for Control

RNN is a class of artificial neural networks where connec-
tions between nodes form a directed graph along a temporal
sequence. This allows it to exhibit temporal dynamic behavior.
By defining the cell state as the time-coupled states θi and ωi,
the state transition dynamics of the power system is integrated
as illustrated in Fig. 4

The operation of RNN is shown by the left side of Fig. 4. The
cell unit of RNN will remember its current state at the stage k
and pass it as an input to the next stage. Unfolding the cell unit
through time will give the right side of Fig. 4. In this way, RNN
can be utilized to deal with time-coupled state variables. Specif-
ically, the state (θi(k − 1), ωi(k − 1)) for all i = 1, . . . , n at the
stage k − 1 is taken as an input in the state transition function
(17b) (17c) and thus the state (θi(k), ωi(k)) for all i = 1, . . . , n
at the stage k is obtained. The control function uϕi

(ωi(k)) in
the state transition function is formatted through (16) to satisfy
inequality constraints. The output Oi(k) = [O1

i (k) O2
i (k)] at

stage k is a vector with two components computed by O1
i (k) =

ωi(k) and O2
i (k) = (uϕi

(ωi(k)))
2. The loss function is formu-

lated to be equivalent with the objective function (17a) as:

Loss =

N∑
i=1

max
k=0,...,K

|O1
i (k)|+ γ

1

K

K∑
k=1

O2
i (k) (18)

The trainable variables ϕ is specified in the neural network
controller (16) and updated by gradient descent through the Loss
function (18). The unfolded structure of RNN form a directed
graph along a temporal sequence where the gradient of Loss
function can be efficiently computed by auto-differentiation
mechanisms [34].

C. Algorithm

The pseudo-code for our proposed method is given in Algo-
rithm 1. The variables to be trained are weights ϕ = {q̂, b̂, ẑ, ĉ}
for control network represented by (14)-(16). The i− th row of
q̂ and ẑ are the vector q̂i and ẑi in (14) and (15), respectively.
The i-th column of b̂ and ĉ are the vector b̂i and ĉi in (14) and
(15), respectively. Training is implemented in a batch updating
style where the h-th batch initialized with randomly generated
initial states {θhi (0), ωh

i (0)} for all i = 1, . . . , n. The evolution
of states in K stages will be computed through the structure of
RNN as shown by Fig. 4. Adam algorithm is adopted to update
weights in each episode.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on February 28,2023 at 19:50:03 UTC from IEEE Xplore.  Restrictions apply. 



CUI et al.: REINFORCEMENT LEARNING FOR OPTIMAL PRIMARY FREQUENCY CONTROL: A LYAPUNOV APPROACH 1683

Algorithm 1: Reinforcement Learning with RNN.
Require: Learning rate α, batch size H , total time stages

K, number of episodes I , parameters in optimal
frequency control problem (17)

Input: The bound of θi and ωi to generate the initial states
Initialisation :Initial weights ϕ for control network

1: for episode = 1 to I do
2: Generate initial states θhi (0), ω

h
i (0) for the i-th bus in

the h-th batch, i = 1, . . . , n, h = 1, . . . , H
3: Reset the state of cells in each batch as the initial value

xh
i ← {θhi (0), ωh

i (0)}.
4: RNN cells compute through K stages to obtain the

output {Oh,i(0), Oh,i(1), . . . , Oh,i(K)}
5: Calculate total loss of all the batches

Loss = 1
H

∑H
h=1

∑N
i=1 maxk=0,...,K |O1

h,i(k)|+
γ 1
K

∑K
k=1 O

2
h,i(k)

6: Update weights in the neural network by passing Loss
to Adam optimizer: ϕ← ϕ− αAdam(Loss)

7: end for

Fig. 5. Block diagram of WECC generic model [36] .

V. SIMULATION STUDIES

Case studies are conducted on the IEEE New England 10-
machine 39-bus (NE39) power networks to illustrate the ef-
fectiveness of the proposed method. To ensure that our results
apply in practice, simulations are conducted on the system
with 6th-order generator model as well as dynamic models for
inverter-connected resources [20], [35], [36]. Firstly, we show
that the proposed Lyapunov-based approaches for designing
neural network controller can guarantee stability, while un-
constrained neural networks may result in unstable controllers.
Then, we show that the proposed structure can learn a nonlinear
controller that performs better than other controllers.

A. Practical Implementation of Inverter-Based Controllers

In this subsection, we show how the controllers uϕi
(ωi)’s

can be utilized in different types of inverter-connected resources
in practice using the Western Electricity Coordinating Council
(WECC) generic models as an example [36]. This system has
been widely used for studying system response to electrical
disturbances, including major disturbances such as loss of gen-
eration or large step change of load [37], [38]. The generic model
is shown in Fig. 5 and consists of three modules:

1) The renewable energy generator/inverter model (Regc),
which has inputs of real (Ipcmd) and reactive (Iqcmd)

Fig. 6. WECC generic model for PV [36] .

current command and outputs of real (Ip) and reactive
(Iq) current injection into the grid model.

2) The renewable energy electrical controls model (Reec),
which has inputs of real/reactive power setpoints
(pext/qext) that can be externally controlled. The outputs
are the real and reactive current command calculated
according to the pext/qext and the voltage vt.

3) Renewable energy plant controller (Repc) that determines
active and reactive setpoints. The f/p (frequency/active
power output) block emulates active power control, and
v/q (voltage and reactive power output) block emulates
volt/var control at the plant level.

Our paper essentially updates the f/p control block (red
part in Fig. 5). Instead of using a linear droop controller, we
design nonlinear control law u(ωpll) to replace existing linear
f/p control law. The control of wind turbine generator (WTG)
and solar PV can be compared using this generic model. For
example, Fig. 6 shows the dynamic representation of large-scale
PV plants built based on modules in Fig. 5 [36]. The control law
u(ωpll) obtained from the proposed method serves as external
command for the adjustment of active power setpoint in the
module of inverters for Solar PV. Similarly, the control law
u(ωpll) can also be used for WTG by replacing the block of
f/p droop control. Detailed dynamic representation of WTG
using the WECC generic blocks can be find in [36].

B. Simulation Setting

We use TensorFlow 2.0 framework to build the reinforcement
learning environment and run the training process in Google
Colab with a single Nvidia Tesla P100 GPU with 16 GB memory.
ANDES (an open source package for power system dynamic
simulation) is utilized to simulate the dynamic response from
WECC generic model for solar PV and Type-4 wind turbine
generation (WTG) as the renewable resources, and 6th-order
generator model with turbine-governing systems [36], [39]. We
set 30% of active power generation from PV or WTG and the
remaining 70% comes from synchronous generator. Parameters
for the PV and WTG follow the default values in ANDES [39].
For training the neural network controller, the system is in the
Kron reduced form [7], [40] and its dynamics is represented by
(1). The bound on action ui is generated to be uniformly dis-
tributed in [0.8pi, pi]. We generate the trajectories by randomly
picking at most three generators to have a step load change
uniformly distributed in [−1, 1] p.u. We use a non-quadratic
cost Ci(ui) =

∑T
t=1 |ui(t)| from [28] for case studies. The cost

coefficient γ = 0.002. The stepsize between time states is set
as Δt = 0.01s and the total time stages is K = 200. Since the
power output of both PV and WTG follow the power setpoint

Authorized licensed use limited to: University of Washington Libraries. Downloaded on February 28,2023 at 19:50:03 UTC from IEEE Xplore.  Restrictions apply. 



1684 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 38, NO. 2, MARCH 2023

accurately (numerical validation is provided in Appendix XI),
the system dynamics with PV or WTG as the renewables will
be very similar. In the following part of this section, we show
the simulation results using PV as the inverter-connected re-
sources. We compare the performance of the proposed RNN
based structure where the neural network controller is designed
with and without the Lyapunov-based approach, and the drop
control with optimized linear coefficient. The parameter settings
are as follows:

1) RNN-Lyapunov: Neural network controller designed
based on Algorithm 1, which satisfies Theorem 1. The
episode number, batch size and the number of neurons
are 600, 600 and 20, respectively. Parameters of RNN are
updated using Adam with learning rate initializes at 0.05
and decays every 30 steps with a base of 0.7.

2) RNN-Wo-Lyapunov: Controllers are learned without im-
posing any structures and purely optimizes the reward
during training. The controllers are parametrized as neural
networks with two dense-layer and the activation function
in the first layer is tanh. All the other parameters are the
same as RNN-Lyapunov.

3) Linear droop control: let ki be the droop coefficient for
bus i and the droop control policy is ui(ωi) = kiωi for i =
1, . . . , n, thresholded to their upper and lower bounds. The
optimized droop coefficient is obtained by solving (17)
using fmincon function of Matlab.

4) PG-Monotone: This controller is to demonstrate the per-
formance improvements of using RNN during training. So
here we impose the stacked-ReLU structure and trained
with REINFORCE Policy Gradient algorithm [14]. It
differs with 1) only in the training methods. The neural
networks for controller, the episode number, batch num-
ber and optimizer are the same as RNN-Lyapunov. The
learning rate initializes at 0.01 and decays every 30 steps
with a base of 0.7. To encourage exploration, a zero-mean
Gaussian noise is added to the control policy.

C. Necessity of Lyapunov-Based Approach

Theorem 1 ensures that the learned controller would be
locally exponentially stable, but it’s interesting to check the
performance of an unconstrained controller. Intuitively, an un-
stable controller should lead to large costs since some trajectories
would be blowing up. Then maybe a controller that minimizes
the cost would also be stabilizing.

Fig. 7 shows the training loss between controllers learned
with and without the Lyapunov-based approach. Both losses
converge, with the Lyapunov-based controller having better
performances. However, when we implement the controllers,
the one without considering stability is unstable and leads to
very large state oscillations (Fig. 8(b)). In contrast, the controller
constrained by the Lyapunov condition shows good performance
(Fig. 8(a)). The reason for this dichotomy in performance is that
we can only check a finite number of trajectories during training,
and good training performance does not in itself guarantee good
generalization. Therefore, explicitly constraining the controller
structure is necessary.

Fig. 7. Average batch loss along episodes for neural network controller de-
signed with and without the Lyapunov-based approach. Both converges, with
the former converging much for quickly than the latter.

Fig. 8. Dynamics of angle δ and frequency deviation ω in 10 generator buses
corresponding to (a) the neural network controller designed with the Lyapunov-
based approach and (b) the neural network controller designed without the
Lyapunov-based approach. The two controllers exhibit qualitatively different
behavior even though they both achieve finite training losses in Fig. 7. The
controller designed without the Lyapunov-based approach leads to unstable tra-
jectories of the system. (a)Dynamics ofω (left) and δ (right) for RNN-Lyapunov
(b)Dynamics of ω (left) and δ (right) for RNN-Wo-Lyapunov

Fig. 9. Examples of learned controller u corresponding to RNN-Lyapunov,
Linear droop control and Policy Gradient for generator buses 5 and 8. The
comparison shows that the proposed Stacked-ReLU neural network learns
nonlinear controllers in flexible shapes.

D. Performance Comparisons

This subsection shows that the proposed method can learn a
static nonlinear controller that outperforms the optimal linear
droop controller and the RNN training technique is much more
efficient than using a standard policy gradient method. Fig. 9
illustrates the control policy learnt from RNN-Lyapunov, Policy
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Fig. 10. Dynamics of the frequency deviation w and the control action u in
selected generator buses corresponding to (a) Lyapunov-guided neural network
controller learned with RNN. (b) Linear droop control. (c) Lyapunov-guided
neural network controller learned from Policy Gradient with Monotone structure
design. The proposed RNN controller has the smallest cost. (a)Dynamics of ω
(left) and u (right) for RNN-Lyapunov (b)Dynamics of ω (left) and u (right) for
linear droop control (c)Dynamics of ω (left) and u (right) for controller obtained
by PG-Monotone

Gradient and the linear droop control with optimized droop coef-
ficient for four generators. Compared with the traditional droop
control, the proposed stacked-ReLU neural network learns a
nonlinear controller with different shapes for RNN-Lyapunov
and PG-Monotone.

We first study the learned controllers and their performances
during a sudden change in load/generation. Suppose the load
at bus 29 experiences a step load increase of 3 p.u. occurring at
t = 0.5s. Fig. 10 illustrates the dynamics ofω and corresponding
control action u under each of the controllers. After the step
load change, RNN-Lyapunov and linear droop control achieve
similar maximum frequency deviation, while the control action
of RNN-Lyapunov is much lower than the other. PG-Monotone
shows higher frequency deviations. Therefore, the proposed
RNN-Lyapunov approach has the minimal cost. The compu-
tational time of the proposed RNN based method is 1465.58 s,
while the computational time of REINFORCE policy gradient
takes 5050.12 s. Therefore, the proposed RNN based structure
reduces computational time by approximate 70.98% compared
with the general RL structure. The key reason for the better
performance of RNN lies in the efficient usage of the physical
model. For the model-free RL methods including REINFORCE
policy gradient, it is well-known that the neural network will

Fig. 11. Loss with different variation range of step load changes for RNN-
Lyapunov (with the number of training trajectories to be 600 and 300, respec-
tively), Linear droop controller and Policy Gradient. Compared with Linear
droop controller and PG-Monotone, RNN-Lyapunov (trajectory=600) reduces
the loss by approximately 12.63% and 7.83%, respectively.

easily get stuck in the current weights based on the history trajec-
tories [14]. This makes PG controller learn much smaller range
of u (as shown in Fig. 9) since the training of neural network get
stuck in the current weights without updating further. Moreover,
to encourage the training of RL to explore some possibly better
actions, the control policies in REINFORCE policy gradient are
parameterized as Gaussian policies that add Gaussian noises to
the implemented actions. Then, the gradient descent with respect
to the weights in the neural network is calculated from a Gaussian
distribution instead of a deterministic control law. This increases
the computational burden and therefore causes the significant
increase in their computational time.

Next, we randomize the step load changes to simulate and test
the performance of the three methods under multiple different
trajectories. We randomly select three generators to let the step
load change uniformly distributed in U [−Δp̄l,Δp̄l], where Δp̄l
denotes the variation bound of the step load change. The average
loss corresponding toΔp̄l = 0.2, 0.4, . . . , 1.4 p.u. are illustrated
in Fig. 11. Overall, the average loss in linear droop control and
PG-Monotone is approximately 12.63% and 7.83% higher than
RNN-Lyapunov trained with 600 trajectories, respectively. If
reducing the number of training trajectories to 300, the loss will
be 3.36% higher than that trained with 600 trajectories but still
better than linear droop control and PG-Monotone. Therefore,
the proposed method learn the nonlinear controller that leads
to better average control performance under different scenarios.
Moreover, it is generalizable to new scenarios even when there
are not many trajectories for training.

VI. CONCLUSION

This paper investigates the optimal frequency control problem
using reinforcement learning with stability guarantees. From
Lyapunov stability theory, We construct the controllers to be
monotonically increasing through the origin, and prove they
guarantee stability for all operating points in a region. These
controllers are trained using a RNN-based method that allows for
efficient back propagation through time. The learned controllers
are static piece-wise linear functions that do not need real-time
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computation and is practical for implementation. Through sim-
ulations, we show that they outperform optimal linear droop as
well as purely unstructured controllers trained via reinforcement
learning. In particular, controllers failing to consider stability
constraints in learning may lead to unstable trajectories of the
state variables, while our proposed controllers can achieve opti-
mal performances in system frequency responses that use small
control efforts.

APPENDIX A
PROOF OF LEMMA 2

Proof: The proof is similar to the one of [30, Lemma 14],
which boundsV (δ,ω) term by term. Firstly, using the Rayleigh-
Ritz theorem [41], the kinetic energy term, 1

2

∑n
i=1 Mi(ωi −

ω∗)2, is lower bounded by 1
2λmin(M)||ω−ω∗||22 and upper

bounded by 1
2λmax(M)||ω−ω∗||22. Then, with a direct appli-

cation of [31, Lemma 4], the potential energy term Wp(δ) in (9)
can be bounded by β1‖δ − δ∗‖22 ≤Wp(δ) ≤ β2‖δ − δ∗‖22 for
some constants β1 > 0 and β2 > 0.

To deal with the cross term Wc(δ), we define pe,i(δ) :=∑n
j=1 Bij sin(δij). Then, Wc(δ) = (pe(δ)−pe(δ

∗))TM(ω−
ω∗). Clearly, −|Wc(δ)| ≤Wc(δ) ≤ |Wc(δ)|. For ∀x,y ∈ Rn,
2|xTy| ≤ ||x||22 + ||y||22. Thus, we have

|Wc(δ)| ≤ 1

2

(||pe(δ)−pe(δ
∗)||22 + ||M(ω−ω∗)||22

)
≤ 1

2

(
γ2||δ−δ∗||22 + λmax(M)2||ω−ω∗||22

)
,

where the second inequality comes from [31, Lemma 4] and the
Rayleigh-Ritz theorem, with some γ2 > 0. Hence, the Wc(δ)

term is lower bounded by −1

2
(γ2||δ−δ∗||22 + λmax(M)2||ω−

ω∗||22) and upper bounded by
1

2
(γ2||δ−δ∗||22 + λmax(M)2||ω−

ω∗||22). Finally, combining the inequalities, we can bound the
entire Lyapunov function V (δ,ω) in (8) with

α1 :=
1

2
min

(
λmin(M)− ελmax(M)2, 2β1 − εγ2

)
> 0 ,

α2 :=
1

2
max

(
λmax(M) + ελmax(M)2, 2β2 + εγ2

)
> 0 ,

for sufficiently small ε > 0. �

APPENDIX B
PROOF OF LEMMA 3

Proof: We start by computing the partial derivatives of
V (δ,ω) with respect to each state, i.e.,

∂V

∂δi
= pe,i(δ)− pe,i(δ

∗) + ε

n∑
j=1,j �=i

Bij cos(δij)Mi(ωi − ω∗)

− ε

n∑
j=1,j �=i

Bij cos(δij)Mj(ωj − ω∗) ,

∂V

∂ωi
= Mi [ωi − ω∗ + ε (pe,i(δ)− pe,i(δ

∗))] .

Therefore, the time derivative of V (δ,ω), i.e., V̇ (δ,ω), is

n∑
i=1

(
∂V

∂δi
δ̇i +

∂V

∂ωi
ω̇i

)

= (pe(δ)−pe(δ
∗) + εH(δ)M(ω−ω∗))T

(
ω − 1

1Tω

n

)
+[ω−ω∗+ε (pe(δ)−pe(δ

∗))]T(pm−Dω−u(ω)−pe(δ))

+ (pe(δ)−pe(δ
∗)+εH(δ)M(ω−ω∗))T

(
1
1Tω

n
−1ω∗

)
︸ ︷︷ ︸

=0

−[ω−ω∗+ε(pe(δ)−pe(δ
∗))]T(pm−Dω∗−u(ω∗)−pe(δ

∗))︸ ︷︷ ︸
=0

= ε (H(δ)M(ω−ω∗))T (ω−ω∗)− (ω−ω∗)TD(ω−ω∗)
− ε (pe(δ)−pe(δ

∗))T (pe(δ)−pe(δ
∗))

− ε (pe(δ)−pe(δ
∗))T D(ω−ω∗)

− [ω−ω∗+ε (pe(δ)−pe(δ
∗))]T (u(ω)− u(ω∗)) ,

which is exactly (9). Note that the extra terms in the second
equality are added to construct a quadratic format without
affecting the the original value of V̇ (δ,ω) since pe(δ)

T1 =
0, H(δ)T1 = 0, and pm−Dω∗−u(ω∗)−pe(δ

∗) = 0 by the
condition at the equilibrium given in (5a).

It remains to show thatQ(δ) � 0, which follows directly from
the fact that the Schur complement of the block εI in Q(δ)

is positive definite: D − ε

2
(H(δ)M +MH(δ))− ε

4D
2 � 0

for sufficiently small ε. �

APPENDIX C
PROOF OF THEOREM 2

Letα bound the magnitude of first derivative of r on X. Define
an equispaced grid of points on X, where β = 1

n is the spacing
between grid points along each dimension. Corresponding to
each grid interval [kβ, (k + 1)β], assign a linear functiony(x) =
r(kβ) + r((k+1)β)−r(kβ)

β (x− kβ), where y(kβ) = r(kβ) and
y((k + 1)β) = r((k + 1)β). For all x ∈ [kβ, (k + 1)β], from
monotonic property, we have r(kβ) ≤ r(x) ≤ r((k + 1)β) and
r(kβ) ≤ y(x) ≤ r((k + 1)β). Therefore, we can bound the ap-
proximation error by

|y(x)− r(x)| ≤ |r((k + 1)β)− r(kβ)| (20)

By mean value theorem, we know that

r((k + 1)β)− r(kβ) = β
∂r(c)

∂x
(21)

for some point c on the line segment between kβ and (k + 1)β.
Given the assumptions made at the outset, |∂r(c)∂x | is bounded by
α and therefore |y(x)− r(x)| can be bounded by βα.

Further, we show that any piece-wise linear function of
y(x) = r(kβ) + r((k+1)β)−r(kβ)

β (x− kβ) can be represented
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Fig. 12. Comparison of rotor angle speed and the bus frequency measurement
from PLL.

Fig. 13. Dynamics of the frequency deviation w of (left) PV and (right) WTG
in selected buses. The frequency deviations are very similar when two different
resources are used.

by the proposed construction (14)(15). Without loss of generos-
ity, assume that y(x) is the positive part and approximated by
f+(x). Let b1i = 0, q1 = r(β) and subsequently bki = (k − 1)β,∑k

j=1 q
j = r(kβ)−r((k−1)β)

β for k = 2, 3, . . . , n. Then the con-
struction of f+(x) through (14) is exactly the same as y(x).
Therefore, |f(x)− r(x)| can also be bounded by βα. We take
β < ε

α to complete the proof.

APPENDIX D
FREQUENCY MEASUREMENT

We conduct simulations to confirm that the frequency mea-
sured by the PLL on the power electronic interfaces are aligned
with the rotor angles on the synchronous generators.

Fig. 12 compares the rotor angle speed and the bus frequency
measurement from PLL on different selected buses. Even though
the shape of the frequency measurement alters a bit when there is
a large spike in the rotor angle speed (shown as the blue curve),
the sign of the measurement is always the same as the rotor
angle speed. Hence, the designed controller is still the same
sign with the rotor angle speed, which guarantees that the system
is asymptotically stable. Moreover, the frequency measurement
generally follows the rotor angle speed closely and achieves the
same steady-state values.

APPENDIX E
COMPARISON OF PV AND WTG

To validates that our approach is practical and applicable
to different types of resources, Fig. 13 compares the rotor
dynamics ω at selected buses when wind or solar are employed
as the renewable resource. After the step change in load, the
frequency behavior and the control action under the learned
RNN-Lyapunov controllers are similar for wind and solar (with
the frequency deviations with solar PV being slightly smaller).

Fig. 14. The active power output and setpoints in selected generator buses
corresponding to (a) WTG. (b) PV. The power output follows the power setpoint
accurately with almost no delays. (a) Active power output and setpoints from
WTG (b) Active power output and setpoints from solar PV.

Fig. 14 compares the active power output from WTG/PV
and the setpoints from the control law u. All the values have
subtracted their steady state value pref , and therefore the active
power from renewables can be negative. Both power outputs
follow the power setpoints very closely. This justifies that the
dynamics of the inverter-connected resources are much faster
than the simulation time step for frequency regulation. Although
the specific model for WTG and PV are different, we can design
the same control low to adjust the active power setpoints for
primary frequency regulation.
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